# **Euler characteristics of** $Out(F_n)$ **and renormalized topological field theory**

Michael Borinsky, ETH Zurich - Institute for Theoretical Studies July 20, Special Session on Mathematical Physics AMS-SMF-EMS Meeting

2022

joint work with Karen Vogtmann arXiv:1907.03543 arXiv:2202.08739 arXiv:22xx

• Usual (classical) Euler characteristic for a space X:

$$\widetilde{\chi}(X) = \sum_{k} (-1)^{k} \dim H_{k}(X, \mathbb{Q})$$

• Virtual/orbifold Euler characteristic with group G acting on X:

$$\chi(X/G) = \sum_{\langle \sigma \rangle} \frac{(-1)^{\dim \sigma}}{|\operatorname{Stab}_G \sigma|}$$

• Usual (classical) Euler characteristic for a space X:

$$\widetilde{\chi}(X) = \sum_{k} (-1)^{k} \dim H_{k}(X, \mathbb{Q})$$

• Virtual/orbifold Euler characteristic with group G acting on X:

$$\chi(X/G) = \sum_{\langle \sigma \rangle} \frac{(-1)^{\dim \sigma}}{|\operatorname{Stab}_G \sigma|}$$
  

$$\bigwedge \operatorname{cells} \operatorname{qto} \operatorname{subdivison} \operatorname{qt} X$$
  
or Sit representatives under  
G-outboy

• Usual (classical) Euler characteristic for a space X:

$$\widetilde{\chi}(X) = \sum_{k} (-1)^{k} \dim H_{k}(X, \mathbb{Q})$$

• Virtual/orbifold Euler characteristic with group G acting on X:

$$\chi(X/G) = \sum_{\langle \sigma \rangle} \frac{(-1)^{\dim \sigma}}{|\operatorname{Stab}_G \sigma|}$$

• If G is virtually torsion-free, acts properly and cocompactly, and X is contractible, then  $\chi(X/G)$  is an invariant of G.

• Usual (classical) Euler characteristic for a space X:

$$\widetilde{\chi}(X) = \sum_{k} (-1)^{k} \dim H_{k}(X, \mathbb{Q})$$

• Virtual/orbifold Euler characteristic with group G acting on X:

$$\chi(X/G) = \sum_{\langle \sigma \rangle} \frac{(-1)^{\dim \sigma}}{|\operatorname{Stab}_G \sigma|}$$

- If G is virtually torsion-free, acts properly and cocompactly, and X is contractible, then  $\chi(X/G)$  is an invariant of G.
- This invariant behaves well under morphisms

$$1 \rightarrow G \rightarrow H \rightarrow M \rightarrow 1 \qquad \Rightarrow \quad \chi(H) = \chi(G) \cdot \chi(M)$$

the classic Euler characteristic does not

$$\Rightarrow \quad \widetilde{\chi}(H) = \widetilde{\chi}(G) \cdot \widetilde{\chi}(M)$$

1

#### Overview

# Teichmüller space $\mathbb{T}_g$ $\left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

mapping class group

Harer Zagier (1986):

$$\chi(\mathsf{MCG}(S_g)) = \chi(\mathcal{M}_g)$$
  
=  $\frac{B_{2g}}{4g(g-1)}$ 

Culler-Vogtmann Outer space  $\mathcal{O}_n$ 



outer automorphisms of  $F_n$ 

Here:

$$\chi(\operatorname{Out}(F_n)) = \chi(\mathcal{O}_n / \operatorname{Out}(F_n))$$
  
= ... < 0

• Usual (classical) Euler characteristic for a space X:

$$\widetilde{\chi}(X) = \sum_{k} (-1)^{k} \dim H_{k}(X, \mathbb{Q})$$

$$\Rightarrow$$
 dim  $H_{(X,Q)} \ge 1\tilde{\chi}(X)$ 

#### Overview



mapping class group

Harer Zagier (1986):

$$egin{aligned} \chi(\mathsf{MCG}(S_g)) &= \chi(\mathcal{M}_g) \ &= rac{B_{2g}}{4g(g-1)} \ &|\widetilde{\chi}(\mathsf{MCG}(S_g))| \sim g^{2g} \end{aligned}$$

Culler-Vogtmann Outer space  $\mathcal{O}_n$ 



outer automorphisms of  $F_n$ 

Here:

$$\chi(\operatorname{Out}(F_n)) = \chi(\mathcal{O}_n / \operatorname{Out}(F_n))$$
$$= \dots < 0$$
$$\widetilde{\chi}(\operatorname{Out}(F_n)) | \sim n^n$$

# Groups

#### Automorphisms of groups

- Take a group G
- An automorphism of G,  $\rho \in Aut(G)$  is a bijection

 $\rho: G \to G$ 

such that  $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$  for all  $x, y \in G$ 

- Normal subgroup:  $Inn(G) \triangleleft Aut(G)$ , the inner automorphisms.
- We have,  $\rho_h \in \mathsf{Inn}(G)$

$$\rho_h : G \to G,$$
 $g \mapsto h^{-1}gh$ 

for each  $h \in G$ .

• Outer automorphisms: Out(G) = Aut(G) / Inn(G)

#### Automorphisms of the free group

• Consider the free group with *n* generators

$$F_n = \langle a_1, \ldots, a_n \rangle$$

E.g.  $a_1a_3^{-5}a_2 \in F_3$  only identity:  $a_ka_k^{-1} = \mathrm{id}$ 

- The group  $Out(F_n)$  is our main object of interest.
- Generated by

and  $a_1 \mapsto a_1 a_2$   $a_2 \mapsto a_2$   $a_3 \mapsto a_3$  ...  $a_1 \mapsto a_1^{-1}$   $a_2 \mapsto a_2$   $a_3 \mapsto a_3$  ...

and permutations of the letters.

# **S**paces

#### How to study groups such as MCG(S) or $Out(F_n)$ ?

#### Main idea

Realize G as symmetries of some geometric object.

#### For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

- $\Rightarrow$  A point in Teichmüller space T(S) is a pair,  $(X, \mu)$ 
  - A Riemann surface X.
  - A marking: a homeomorphism  $\mu : S \to X$ .



 $\mathsf{MCG}(S)$  acts on T(S) by composing to the marking:  $(X, \mu) \mapsto (X, \mu \circ g^{-1})$  for some  $g \in \mathsf{MCG}(S)$ .

#### For $Out(F_n)$ : Outer space

Idea: Mimic previous construction for  $Out(F_n)$ . Culler, Vogtmann (1986) Let  $R_n$  be the rose with *n* petals.



 $\Rightarrow$  A point in Outer space  $\mathcal{O}_n$  is a pair,  $(G, \mu)$ 

- A connected graph G with a length assigned to each edge.
- A marking: a homotopy equivalence  $\mu : R_n \to G$ .



 $Out(F_n)$  acts on  $\mathcal{O}_n$  by composing to the marking:

 $(\Gamma, \mu) \mapsto (\Gamma, \mu \circ g^{-1})$  for some  $g \in Out(F_n) = Out(\pi_1(R_n))$ .



Vogtmann 2008

Roughly:

#### Scalar QFT ~ Integrals over $\mathcal{O}_n / \operatorname{Out}(F_n)$

analogous to

2D Quantum gravity  $\sim$  Integral over T(S)/MCG(S)

|                             | $MCG(S_g)$                             | Out( <i>F<sub>n</sub></i> )                            |
|-----------------------------|----------------------------------------|--------------------------------------------------------|
| acts freely and properly on | Teichmüller space $\mathcal{T}(S_g)$   | Outer space $\mathcal{O}_n$                            |
| Quotient X/G                | Moduli space of curves $\mathcal{M}_g$ | Moduli space of graphs<br>$\mathcal{O}_n  /  Out(F_n)$ |

## Invariants

Why study X (Out Fn)?

#### Further motivation to look at Euler characteristic of $Out(F_n)$

Consider the abelization map  $F_n \to \mathbb{Z}^n$ .  $\Rightarrow$  Induces a group homomorphism

$$1 \to \mathcal{T}_n \to \operatorname{Out}(F_n) \to \underbrace{\operatorname{Out}(\mathbb{Z}^n)}_{=\operatorname{GL}(n,\mathbb{Z})} \to 1$$

- $\mathcal{T}_n$  the 'non-abelian' part of  $Out(F_n)$  is interesting.
- By the short exact sequence above

$$\chi(\operatorname{Out}(F_n)) = \underbrace{\chi(\operatorname{GL}(n,\mathbb{Z}))}_{=0} \chi(\mathcal{T}_n) \quad n \ge 3$$

 $\Rightarrow \chi(\operatorname{Out}(F_n)) = 0 \text{ for } n \geq 3?$ 

#### Further motivation to look at Euler characteristic of $Out(F_n)$

n 2 3 4 5 6  

$$Y(0_{4}+\bar{t}_{y}) - \frac{1}{24} - \frac{1}{48} - \frac{161}{5760} - \frac{367}{5760} - \frac{120257}{580608}$$

#### Further motivation to look at Euler characteristic of $Out(F_n)$

Consider the abelization map  $F_n \to \mathbb{Z}^n$ .  $\Rightarrow$  Induces a group homomorphism

$$1 \to \mathcal{T}_n \to \operatorname{Out}(F_n) \to \underbrace{\operatorname{Out}(\mathbb{Z}^n)}_{=\operatorname{GL}(n,\mathbb{Z})} \to 1$$

- $\mathcal{T}_n$  the 'non-abelian' part of  $Out(F_n)$  is interesting.
- By the short exact sequence above

$$\chi(\operatorname{Out}(F_n)) = \underbrace{\chi(\operatorname{GL}(n,\mathbb{Z}))}_{=0} \chi(\mathcal{T}_n) \quad n \ge 3$$

- $\Rightarrow \chi(\operatorname{Out}(F_n)) = 0 \text{ for } n \geq 3? \text{ No!}$
- ⇒  $\mathcal{T}_n$  does not have finitely-generated homology for  $n \ge 3$  if  $\chi(\operatorname{Out}(F_n)) \ne 0$ .

#### Conjectures

#### **Conjecture** Smillie-Vogtmann (1987)

 $\chi(\operatorname{Out}(F_n)) \neq 0$  for all  $n \geq 2$ 

and  $|\chi(\operatorname{Out}(F_n))|$  grows exponentially for  $n \to \infty$ .

based on initial computations by Smillie-Vogtmann (1987) up to  $n \leq 11$ . Later strengthened by Zagier (1989) up to  $n \leq 100$ .

#### Conjecture Magnus (1934)

 $\mathcal{T}_n$  is not finitely presentable.

In topological terms, i.e.  $\dim(H_2(\mathcal{T}_n)) = \infty$ ,

which implies that  $\mathcal{T}_n$  does not have finitely-generated homology.

#### Theorem Bestvina, Bux, Margalit (2007)

 $\mathcal{T}_n$  does not have finitely-generated homology.

# **Result:** $\chi(\operatorname{Out}(F_n)) \neq 0$

**Theorem A** MB-Vogtmann (2019)

$$\chi(\operatorname{Out}(F_n)) < 0 \text{ for all } n \ge 2$$
  
 $\chi(\operatorname{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n-3/2)}{\log^2 n} \text{ as } n \to \infty.$ 

which settles the initial conjecture by Smillie-Vogtmann (1987).

This Theorem A follows from an implicit expression for  $\chi(\operatorname{Out}(F_n))$ :

Theorem B MB-Vogtmann (2019)  $\sqrt{2\pi}e^{-N}N^{N} \sim \sum_{k\geq 0} a_{k}(-1)^{k}\Gamma(N+1/2-k) \text{ as } N \to \infty$ where  $\sum_{k\geq 0} a_{k}z^{k} = \exp\left(\sum_{n\geq 1} \chi(\operatorname{Out}(F_{n+1}))z^{n}\right)$ 

- $\Rightarrow \chi(\operatorname{Out}(F_n))$  are the coefficients of an asymptotic expansion.
  - Analytic argument needed to prove Theorem  $B \Rightarrow$  Theorem A.
  - In this talk: Focus on proof of Theorem B

### Analogy to the mapping class group

#### Harer-Zagier formula for $\chi(MCG(S_g))$

Similar result for the mapping class group/moduli space of curves:

**Theorem** Harer-Zagier (1986)

$$\chi(\mathcal{M}_g) = \chi(\mathsf{MCG}(S_g)) = rac{B_{2g}}{4g(g-1)} \qquad g \ge 2$$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.
- $\Rightarrow$  Kontsevich's proof served as a blueprint for  $\chi(\operatorname{Out}(F_n))$ .

• We have the identity by Kontsevich (1992):

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum_{\text{connected graphs } \mathsf{G}} \frac{(-1)^{|V_{\mathcal{G}}|}}{|\operatorname{Aut} \mathcal{G}|} z^{\chi(\mathcal{G})}.$$

• Kontsevich proved this using a combinatorial model of  $\mathcal{M}_{g,n}$  by Penner (1986) based on ribbon graphs.

For inshow 
$$\alpha$$
:  
 $\Gamma = \bigcup_{n_0} \Im_{n_0} (\Gamma) = -1$ 
 $\int_{n_0} (\Im_{n_0} \Gamma) = 1$ 
 $\int_{n_0} (\Im_{n_0} \Gamma) = 1$ 

• We have the identity by Kontsevich (1992):

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum_{\text{connected graphs } \mathsf{G}} \frac{(-1)^{|V_{\mathcal{G}}|}}{|\operatorname{Aut} \mathcal{G}|} z^{\chi(\mathcal{G})}.$$

- Kontsevich proved this using a combinatorial model of M<sub>g,n</sub> by Penner (1986) based on ribbon graphs.
- The expression on the right hand side can be evaluated using a 'topological field theory':

$$\sum_{\text{connected graphs G}} \frac{(-1)^{|V_G|}}{|\operatorname{Aut} G|} z^{\chi(G)} = \log\left(\frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)} dx\right)$$
$$= \sum_{k\geq 1} \frac{\zeta(-k)}{-k} z^{-k}$$

• We have the identity by Kontsevich (1992):

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum_{\text{connected graphs } \mathsf{G}} \frac{(-1)^{|V_{\mathcal{G}}|}}{|\operatorname{Aut} \mathcal{G}|} z^{\chi(\mathcal{G})}.$$

- Kontsevich proved this using a combinatorial model of  $\mathcal{M}_{g,n}$  by Penner (1986) based on ribbon graphs.
- The expression on the right hand side can be evaluated using a 'topological field theory':

$$\sum_{\text{connected graphs G}} \frac{(-1)^{|V_G|}}{|\operatorname{Aut} G|} z^{\chi(G)} = \log\left(\frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)} dx\right)$$
$$= \sum_{k\geq 1} \frac{\zeta(-k)}{-k} z^{-k} \operatorname{TFT}$$

• We have the identity by Kontsevich (1992):

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum_{\text{connected graphs } \mathsf{G}} \frac{(-1)^{|V_{\mathcal{G}}|}}{|\operatorname{Aut} \mathcal{G}|} z^{\chi(\mathcal{G})}.$$

- Kontsevich proved this using a combinatorial model of M<sub>g,n</sub> by Penner (1986) based on ribbon graphs.
- The expression on the right hand side can be evaluated using a 'topological field theory':

$$\sum_{\text{connected graphs G}} \frac{(-1)^{|V_G|}}{|\operatorname{Aut} G|} z^{\chi(G)} = \log\left(\frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)} dx\right)$$
$$= \sum_{k>1} \frac{\zeta(-k)}{-k} z^{-k}$$

• The formula for  $\chi(\mathcal{M}_{g,n})$  follows via the short exact sequence

$$1 
ightarrow \pi_1(S_{g,n}) 
ightarrow \mathcal{M}_{g,n+1} 
ightarrow \mathcal{M}_{g,n} 
ightarrow 1$$
 20

# Analogous proof strategy for $\chi(\text{Out}(F_n))$ using renormalized TFTs

Generalize from  $Out(F_n)$  to  $A_{n,s}$  and from  $\mathcal{O}_n$  to  $\mathcal{O}_{n,s}$ , Outer space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)



Forgetting a leg gives the short exact sequence of groups

$$1 \rightarrow F_n \rightarrow A_{n,s} \rightarrow A_{n,s-1} \rightarrow 1$$



#### Step 2

- Use a combinatorial model for  $\mathcal{G}_{n,s}$
- ⇒ graphs with a forest Smillie-Vogtmann (1987): Ce(CA peime in  $G_{n,s}$  can be associated with a pair of a graph G and a forest  $f \subset G$ .





$$\chi(A_{n,s}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\operatorname{Stab}(\sigma)|}$$
$$= \sum_{\substack{\text{graphs } G \\ \text{with } s \text{ legs} \\ \operatorname{rank}(\pi_1(G)) = n}} \sum_{forests } f \subset G \frac{(-1)^{|E_f|}}{|\operatorname{Aut } G|}$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$\chi(A_{n,s}) = \sum_{\substack{\text{graphs } G \\ \text{with } s \text{ legs} \\ \text{rank}(\pi_1(G)) = n}} \frac{1}{|\operatorname{Aut } G|} \underbrace{\sum_{\substack{\text{forests } f \subset G \\ =:\tau(G)}} (-1)^{|E_f|}}_{=:\tau(G)}$$

au fulfills the identities  $au(\emptyset)=1$  and

$$\sum_{\substack{g \subset G \\ g \text{ bridgeless}}} au(g)(-1)^{|\mathcal{E}_{G/g}|} = 0 \qquad ext{ for all } G 
eq \emptyset$$

 $\Rightarrow \tau$  is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)

Let 
$$T(z,x) = \sum_{n,s \ge 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!}$$
  
then 
$$1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{T(z,x)} dx$$

Using the short exact sequence,  $1 \rightarrow F_n \rightarrow A_{n,s} \rightarrow A_{n,s-1} \rightarrow 1$  results in the action

$$1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x) + \frac{x}{2} + T(-ze^x)} dx$$

where  $T(z) = \sum_{n\geq 1} \chi(\operatorname{Out}(F_{n+1}))z^{-n}$ .

This gives the implicit result in Theorem B.

# Part 2: The classical Euler characteristic



- $\Rightarrow$  Indicates huge amount of homology in odd dimensions.
  - Where does all this homology come from?



| A missing pi | ece: |
|--------------|------|
|--------------|------|

| complex                          | virtual $\chi$     | classical x               |
|----------------------------------|--------------------|---------------------------|
| associative/ $\mathcal{M}_{g,n}$ | Harer, Zagier 1986 | Harer, Zagier 1986        |
| commutative                      | Kontsevich 1993    | Willwacher, Živković 2015 |
| $Lie/Out(F_n)$                   | Kontsevich 1993    | ?                         |

Lie/Out( $F_n$ ) integral case  $\tilde{\chi}(Out(F_n))$  only known for  $n \leq 11$ . Thanks to a supercomputer calculation by Morita 2014.

#### Missing Euler characteristic of the Lie case

Theorem MB, Vogtmann 2022 (in prep)  
$$\prod_{n \ge 1} \left( \frac{1}{1 - z^{-n}} \right)^{\tilde{\chi}(\operatorname{Out}(F_{n+1}))} = \left( \prod_{k \ge 1} \int \frac{\mathrm{d} x_k}{\sqrt{2\pi k/z^k}} \right) e^{\sum_{k \ge 1} \frac{z^k}{k} \left( c_k - \frac{c_{2k}}{2} + \frac{c_k^2}{2} - \frac{x_k^2}{2} - (1 + c_k) \sum_{j \ge 1} \frac{\mu(j)}{j} \log(1 + c_{jk}) \right)}$$
where  $c_{2k} = x_{2k} + z^{-k}$  and  $c_{2k-1} = x_{2k-1}$  for all  $k \ge 1$ .

 $\Rightarrow \text{Getzler-Kapranov} \text{ type expression for } \widetilde{\chi}(\text{Out}(F_n)).$ (Can be evaluated up to  $n \approx 80$  (vs 11 known values).)  $\widetilde{\zeta} \text{ using QFT metods }$ 

Theorem MB, Vogtmann 2022 (in prep)  $\lim_{n\to\infty}\frac{\widetilde{\chi}(\operatorname{Out} F_n)}{\chi(\operatorname{Out} F_n)}=e^{-\frac{1}{4}}$ 

In contrast to 
$$\lim_{g\to\infty} \frac{\widetilde{\chi}(\mathcal{M}_g)}{\chi(\mathcal{M}_g)} = 1$$
, Harer-Zagier 1986

Short summary:

- $\chi(\operatorname{Out}(F_n)) \neq 0$
- Much unexplained homology of Out(F<sub>n</sub>) due to rapid growth of χ̃(Out(F<sub>n</sub>)).

Open questions:

- What generates it?
- The TFT analysis indicates a non-trivial 'duality' between MCG(S<sub>g</sub>) and Out(F<sub>n</sub>). Obvious candidate: Koszul duality (?)