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e |f G is virtually torsion-free, acts properly and cocompactly,
and X is contractible, then x(X/G) is an invariant of G.
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e |f G is virtually torsion-free, acts properly and cocompactly,
and X is contractible, then x(X/G) is an invariant of G.
e This invariant behaves well under morphisms

l1-G—>H—->M-—=1 = x(H) =x(G) - x(M)

the classic Euler characteristic does not

7 x(H) = Xx(G) - x(M)



Teichmuller space T, Culler-Vogtmann Outer space O,

MCG(S,) Out(F,)
mapping class group outer automorphisms of F,
Here:
X(MCG(5;)) = x(Myg) X(Out(Fn)) = x(On / Out(Fp))
:4g(§2il) —...<0
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e Usual (classical) Euler characteristic for a space X:

X(X) =D (—1)*dim Hk(X, Q)
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Teichmuller space T, Culler-Vogtmann Outer space O,

MCG(S;)
mapping class group outer automorphisms of F,
Here:
X(MCG(S;)) = x(Mg) x(Out(Fy)) = x(On / Out(Fy))
Bag
4g(g — 1)
IX(MCG(Sg))| ~ g°& [X(Out(Fp))| ~ n"
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Automorphisms of groups

e Take a group G
e An automorphism of G, p € Aut(G) is a bijection

p:G— G
such that p(x - y) = p(x) - p(y) for all x,y € G

e Normal subgroup: Inn(G) < Aut(G), the inner automorphisms.
e We have, pj € Inn(G)
on .G — G,
g+ h~'gh

for each h € G.
e Outer automorphisms: Out(G) = Aut(G)/ Inn(G)



Automorphisms of the free group

e Consider the free group with n generators

Fn=(a1,...,an)

E.g. ala§532 € F3 only identity: aka;l = id
e The group Out(F,) is our main object of interest.

e Generated by

dl — aiar ar — an a3 +— a3z

and alr—>al_1 ar — an as +— as

and permutations of the letters.
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How to study such groups?

How to study groups such as MCG(S) or Out(F,)?

Realize G as symmetries of some geometric object.



For the mapping class group: Teichmuller space

Let S be a closed, connected and orientable surface.
= A point in Teichmiiller space T(S) is a pair, (X, )

o A X.
e A marking: a w:S— X.
_/_>
rA i
C - _J
R
X
S

MCG(S) on T(S) by composing to the marking:
(X, 1) — (X, pog™t) for some g € MCG(S).



For Out(F,): Outer space

ldea: Mimic previous construction for Out(Fp).
Culler, Vogtmann (1986)
Let R, be the rose with n petals.

R, =

= A point in Outer space O, is a pair, (G, u)
e A connected graph G with a length assigned to each edge.
e A marking: a homotopy equivalence 1 : R, — G.

—>
Out(F,) acts on O, by composing to the marking:

(M) — (M po g_l) for some g € Out(F,) = Out(71(R,)).






Intermezzo: Brief physics perspective

Roughly:
Scalar QFT ~ Integrals over O, / Out(F,)

analogous to

2D Quantum gravity ~ Integral overT(S)/ MCG(S)

11



Summary of the respective groups and spaces

MCG(S;) Out(Fp)
acts freely and Teichmuller space Outer space
properly on T(S¢) On

Moduli space of curves | Moduli space of graphs

tient X/G
QOB X M, 0, / Out(F,)

13
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Further motivation to look at Euler characteristic of Out(F,)

Consider the abelization map F, — Z".
= Induces a group homomorphism
1— T,— Out(F,) — Out(Z") —»1

N——
=GL(n,Z)

e T, the ‘non-abelian’ part of Out(F,) is interesting.
e By the short exact sequence above
X(Out(Fp)) = X(GL(”aZ)ZX(Tn) n>3

~"

=0

= x(Out(F,))= 0 for n > 37
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Further motivation to look at Euler characteristic of Out(F,)

Consider the abelization map F, — Z".
= Induces a group homomorphism
1— T,— Out(F,) — Out(Z") —»1

N——
=GL(n,Z)

e T, the ‘non-abelian’ part of Out(F,) is interesting.

e By the short exact sequence above

x(Out(Fr)) = Z))x(Tn) n=3

A\ 4

=0

= x(Out()J= 0 for n > 3?7 No!

= T, does not have finitely-generated homology for n > 3 if
x(Out(Fp)) # 0.
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x(Out(F,)) # 0 for all n > 2

and |x(Out(F,))| grows exponentially for n — oc.

based on initial computations by up
to n < 11. Later strengthened by up to n < 100.

T » is not finitely presentable.
In topological terms, i.e. dim(Hx(7T,)) = oo,

which implies that 7, does not have finitely-generated homology.

T » does not have finitely-generated homology. ;



Result: x(Out(F,)) #0




Theorem A MB-Vogtmann (2019)

x(Out(Fp,)) <0 forall n > 2

Y(Out(F,)) ~ — ¢12_7T r('ro;fn/ 2

which settles the initial conjecture by
Smillie-Vogtmann (1987).

as n — oQ.

17



This Theorem A follows from an implicit expression for
X(Out(Fp)):
Theorem B MB-Vogtmann (2019)

Vore NNV ~ Y " a (—1)¥T(N +1/2 — k) as N — o0
k>0

where Z akz" = exp Zx(Out(FnH))z”

k>0 n>1

= x(Out(Fp)) are the coefficients of an asymptotic expansion.
e Analytic argument needed to prove Theorem B = Theorem A.

e |n this talk: Focus on proof of Theorem B

18



Analogy to the mapping class group




Harer-Zagier formula for x(MCG(S,))

Similar result for the mapping class group/moduli space of curves:

B
28 g > 2

X(Mg) = x(MCG(Sp) = 7y 5>

e Original proof by Harer and Zagier in 1986.
e Alternative proof using topological field theory (TFT) by

e Simplified proof by based on TFT's.

=

19



Kontsevich’s argument

e \We have the identity by

X 2 2g—n __ (_1)|VG| G)
Z S Z | Aut G| 24,

connected graphs G

o Kontsewch proved this using a combinatorial model of M, ,

by based on ribbon graphs.
"’Oi’ fwsl"ﬂ"\ o
_——
" A 4 O/
) ©
W, (o) =1 y(r)=-1 24:4 wn=4

/(A’I/1 AL



Kontsevich’s argument

e \We have the identity by Kontsevich (1992):
ZX ,2-2g—n _ Z (-1)ve ~X(G)
| Aut G|
connected graphs G
o Kontsewch proved this using a combinatorial model of M, ,
by Penner (1986) based on ribbon graphs.

e The expression on the right hand side can be evaluated using

a ‘topological field theory':

GROMGIN L (14x—e%)
- 7 — |O eZ X—e dX)
connecte%v:graphs G ’ Aut G‘ ° V21z JR
—k
5 SR,
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Kontsevich’s argument

e \We have the identity by Kontsevich (1992):

x(M ,2—2g—n _ (— 1)| el X(G)
Z = 2 Tawg
connected graphs G

o Kontsewch proved this using a combinatorial model of M, ,
by Penner (1986) based on ribbon graphs.
e The expression on the right hand side can be evaluated using

a ‘topological field theory':

V,
2 %ZX(G) - — / AR o )
connected graphs G ’ ut ‘ 21z
z< 9
k>1 ' ? (

ce,c,Hl o“
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Kontsevich’s argument

e \We have the identity by Kontsevich (1992):
ZX ,2-2g—n _ Z (-1)ve ~X(G)
| Aut G|
connected graphs G
o Kontsewch proved this using a combinatorial model of M, ,

by Penner (1986) based on ribbon graphs.
e The expression on the right hand side can be evaluated using

a ‘topological field theory':

GROMGIN L (14x—e%)
- 7 — |O eZ X—e dX)
connecte%v:graphs G ’ Aut G‘ ° V21z JR
—k
5 SR,

e The formula for x(M, ,) follows via the short exact sequence

]. — 7T]_(5g’n) — Mg7n+1 — Mg’n — ]. 20



Analogous proof strategy for
X(Out(F,)) using renormalized TFTs




Generalize from Out(Fj,) to Ans and from O, to O, 6, Outer
space of graphs of rank n and s

Ag E @ « G

Forgetting a leg gives the short exact sequence of groups

1= Fp— Aps = Ans—1 — 1

@/ —) @‘503,2. .



Step 2

e Use a combinatorial model for G s

= graphs with a forest Smillie-Vogtmann (1987):
ce((
A pexr®-in G, s can be associated with a pair of a graph G and a

forest f C G.

fc(a

(G, 1)

Tl 7 [o rest=

26



A:‘ﬁt“ slon qu l'Cff-

$t<su/‘a.

B (_1)dim(o) = {E
i) _EU: Stab(o)| ¢ /

? ~
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B (_1)dim(o)
x(Ans) =3 Stab(0)]

o
> ooy L
| Aut G|
graphs G forests fCG
with s legs

rank(71(G))=n

27



Renormalized TFT interpretation MB-Vogtmann (2019):

X(An,s) — Z ‘AultG’ Z (—]_)|Ef‘

graphs G forests FCG
with s legs = ~~ <
rank(71(G))=n =:7(G)

7 fulfills the identities 7(0)) = 1 and

Z T(g)(—l)‘EG/g‘ — 0 for all G # ()

gCG
g bridgeless

= 7 is an inverse of a character in a Connes-Kreimer-type
renormalization Hopf algebra. Connes-Kreimer (2001)

28



TFT evaluation

S

Let T(z,x) = Z X(An,s)Zl_nX—I
n,s>0 >
then = e T(2:%) gy
2Tz JR

Using the short exact sequence, 1 — F, — Aps — Aps—1 — 1

results in the action

1l =

z(1+x—e*)+5+T(— zeX)d
V2rz / 8

where T(z) =) _,>1 x(Out(Fat1))z™".

This gives the implicit result in Theorem B.
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Part 2: The clasciqa Euler characteristic




Theorem A MB-Vogtmann (2019)

x(Out(F,)) <0 forall n > 2

X(Out(Fp)) ~

n — oQ.

= Indicates huge amount of homology in odd dimensions.

e Where does all this homology come from?
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Low rank computations

diw, HK (Ou{'(?n)/ @)

‘7}'(0&&)
n\k|0 1 2 3 4 5 6 7 8 9 10 11
2 1 0 1
3 |1 0 0 0 1
4 |1 0 0 0 1 0 .
5 |10 000 0 0 0 1
6 |1 0 0 0 0 OO 01 0 7
7 |10 00 0O0O0O0@TO0O0O@QI]!1

=21

-12¢
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Euler characteristics of Kontsevich’s graph complexes

) €
A missing piece:
-
complex Uii‘"kcl X C(aﬁﬁsﬂcdﬁ X
associative/ M, , Harer, Zagier 1986 Harer, Zagier 1986
commutative Kontsevich 1993 Willwacher, Zivkovié 2015
Lie/Out(F,) Kontsevich 1993 ?

Lie/Out(F,) integral case x(Out(F,)) only known for n < 11.
Thanks to a supercomputer calculation by Morita 2014,

x

30



Missing Euler characteristic of the Lie case

s 2 X2
ek Jjz

51 \/ 2mk/zK

where ¢, = xo + 27K and cop_1 = xox_1 for all k > 1.

= type expression for x(Out(Fp,)).
(Can be evaluated up to n =~ 80 (vs 11 known values).)

A —
C(LS(MCY &?1 We%i}(
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Theorem MB, Vogtmann 2022 (in prep)

In contrast to limg_,o0

X(Out F),)

I

[im

n—oo x(Out F,)

X(Mg)
X(Mg)

=€

= 1, Harer-Zagier 1986.
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Summary and open questions

Short summary:

° X(Out(Fn)) # 0
e Much unexplained homology of Out(F,) due to rapid growth
of xX(Out(F,)).

Open questions:

e What generates it?

e The TFT analysis indicates a non-trivial ‘duality’ between
MCG(S;) and Out(F,). Obvious candidate: Koszul duality (?)

33



