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Euler characteristics

• Usual (classical) Euler characteristic for a space X :

��(X ) =
�

k

(�1)k dimHk(X ,Q)

• Virtual/orbifold Euler characteristic with group G acting on X :

�(X/G ) =
�

�σ�

(�1)dimσ

| StabG �|
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• Usual (classical) Euler characteristic for a space X :

��(X ) =
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• Virtual/orbifold Euler characteristic with group G acting on X :

�(X/G ) =
�
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• If G is virtually torsion-free, acts properly and cocompactly,

and X is contractible, then �(X/G ) is an invariant of G .
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Euler characteristics

• Usual (classical) Euler characteristic for a space X :

��(X ) =
�

k

(�1)k dimHk(X ,Q)

• Virtual/orbifold Euler characteristic with group G acting on X :

�(X/G ) =
�

�σ�

(�1)dimσ

| StabG �|

• If G is virtually torsion-free, acts properly and cocompactly,

and X is contractible, then �(X/G ) is an invariant of G .

• This invariant behaves well under morphisms

1 � G � H � M � 1 � �(H) = �(G ) · �(M)

the classic Euler characteristic does not

�� ��(H) = ��(G ) · ��(M)
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Overview

Teichmüller space Tg

MCG(Sg )

mapping class group

Harer Zagier (1986):

�(MCG(Sg )) = �(Mg )

=
B2g

4g(g � 1)

Culler-Vogtmann Outer space On

Out(Fn)

outer automorphisms of Fn

Here:

�(Out(Fn)) = �(On /Out(Fn))

= . . . < 0
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Groups
































































Automorphisms of groups

• Take a group G

• An automorphism of G, � � Aut(G ) is a bijection

� : G � G

such that �(x · y) = �(x) · �(y) for all x , y � G

• Normal subgroup: Inn(G ) � Aut(G ), the inner automorphisms.

• We have, �h � Inn(G )

�h :G � G ,

g �� h�1gh

for each h � G .

• Outer automorphisms: Out(G ) = Aut(G )/ Inn(G )
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Automorphisms of the free group

• Consider the free group with n generators

Fn = �a1, . . . , an�

E.g. a1a
�5
3 a2 � F3 only identity: aka

�1
k = id

• The group Out(Fn) is our main object of interest.

• Generated by

a1 �� a1a2 a2 �� a2 a3 �� a3 . . .

and a1 �� a�1
1 a2 �� a2 a3 �� a3 . . .

and permutations of the letters.
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How to study such groups?

How to study groups such as MCG(S) or Out(Fn)?

Main idea

Realize G as symmetries of some geometric object.

Due to Stallings, Thurston, Gromov, . . . (1970-)
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For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

� A point in Teichmüller space T (S) is a pair, (X , µ)

• A Riemann surface X .

• A marking : a homeomorphism µ : S � X .

MCG(S) acts on T (S) by composing to the marking:

(X , µ) �� (X , µ � g�1) for some g � MCG(S).
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For Out(Fn): Outer space

Idea: Mimic previous construction for Out(Fn).

Culler, Vogtmann (1986)

Let Rn be the rose with n petals.

� A point in Outer space On is a pair, (G , µ)

• A connected graph G with a length assigned to each edge.

• A marking: a homotopy equivalence µ : Rn � G .

Out(Fn) acts on On by composing to the marking:

(Γ, µ) �� (Γ, µ � g�1) for some g � Out(Fn) = Out(�1(Rn)).
9






























































R If

I



O2

Put picture of Outer space here
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Intermezzo: Brief physics perspective

Roughly:

Scalar QFT � Integrals overOn /Out(Fn)

analogous to

2D Quantum gravity � Integral overT (S)/MCG(S)
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Summary of the respective groups and spaces

MCG(Sg ) Out(Fn)

acts freely and

properly on

Teichmüller space

T (Sg )

Outer space

On

Quotient X/G
Moduli space of curves

Mg

Moduli space of graphs

On /Out(Fn)
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Invariants
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Further motivation to look at Euler characteristic of Out(Fn)

Consider the abelization map Fn � Zn.

� Induces a group homomorphism

1 � T n � Out(Fn) � Out(Zn)� �� �
=GL(n,Z)

� 1

• T n the ‘non-abelian’ part of Out(Fn) is interesting.

• By the short exact sequence above

�(Out(Fn)) = �(GL(n,Z))� �� �
=0

�(T n) n � 3

� �(Out(Fn)) �= 0 for n � 3?
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Further motivation to look at Euler characteristic of Out(Fn)

Consider the abelization map Fn � Zn.

� Induces a group homomorphism

1 � T n � Out(Fn) � Out(Zn)� �� �
=GL(n,Z)

� 1

• T n the ‘non-abelian’ part of Out(Fn) is interesting.

• By the short exact sequence above

�(Out(Fn)) = �(GL(n,Z))� �� �
=0

�(T n) n � 3

� �(Out(Fn)) �= 0 for n � 3? No!

� T n does not have finitely-generated homology for n � 3 if

�(Out(Fn)) �= 0.
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Conjectures

Conjecture Smillie-Vogtmann (1987)

�(Out(Fn)) �= 0 for all n � 2

and |�(Out(Fn))| grows exponentially for n � �.

based on initial computations by Smillie-Vogtmann (1987) up

to n � 11. Later strengthened by Zagier (1989) up to n � 100.

Conjecture Magnus (1934)

T n is not finitely presentable.

In topological terms, i.e. dim(H2(T n)) = �,

which implies that T n does not have finitely-generated homology.

Theorem Bestvina, Bux, Margalit (2007)

T n does not have finitely-generated homology.
16






Result: χ(Out(Fn)) �= 0



Theorem A MB-Vogtmann (2019)

�(Out(Fn)) < 0 for all n � 2

�(Out(Fn)) � � 1�
2�

Γ(n � 3/2)

log2 n
as n � �.

which settles the initial conjecture by

Smillie-Vogtmann (1987).
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This Theorem A follows from an implicit expression for

�(Out(Fn)):

Theorem B MB-Vogtmann (2019)

�
2�e�NNN �

�

k�0

ak(�1)kΓ(N + 1/2� k) as N � �

where
�

k�0

akz
k = exp

�
�
�

n�1

�(Out(Fn+1))z
n

�
�

� �(Out(Fn)) are the coefficients of an asymptotic expansion.

• Analytic argument needed to prove Theorem B � Theorem A.

• In this talk: Focus on proof of Theorem B

18



Analogy to the mapping class group



Harer-Zagier formula for χ(MCG(Sg ))

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

�(Mg ) = �(MCG(Sg )) =
B2g

4g(g � 1)
g � 2

• Original proof by Harer and Zagier in 1986.

• Alternative proof using topological field theory (TFT) by

Penner (1988).

• Simplified proof by Kontsevich (1992) based on TFT’s.

� Kontsevich’s proof served as a blueprint for �(Out(Fn)).

19



Kontsevich’s argument

• We have the identity by Kontsevich (1992):

�

g ,n

�(Mg ,n)

n!
z2�2g�n =

�

connected graphs G

(�1)|VG |

|AutG | z
χ(G).

• Kontsevich proved this using a combinatorial model of Mg ,n

by Penner (1986) based on ribbon graphs.

20
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(�1)|VG |

|AutG | z
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• Kontsevich proved this using a combinatorial model of Mg ,n

by Penner (1986) based on ribbon graphs.

• The expression on the right hand side can be evaluated using

a ‘topological field theory’:

�

connected graphs G

(�1)|VG |

|AutG | z
χ(G) = log

� 1�
2�z

�

R

ez(1+x�ex )dx
�
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�

k�1

�(�k)

�k
z�k
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Kontsevich’s argument

• We have the identity by Kontsevich (1992):

�

g ,n

�(Mg ,n)

n!
z2�2g�n =

�

connected graphs G

(�1)|VG |

|AutG | z
χ(G).

• Kontsevich proved this using a combinatorial model of Mg ,n

by Penner (1986) based on ribbon graphs.

• The expression on the right hand side can be evaluated using
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�
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�k
z�k

• The formula for �(Mg ,n) follows via the short exact sequence

1 � �1(Sg ,n) � Mg ,n+1 � Mg ,n � 1 20



Analogous proof strategy for

χ(Out(Fn)) using renormalized TFTs



Step 1

Generalize from Out(Fn) to An,s and from On to On,s , Outer

space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

1 � Fn � An,s � An,s−1 � 1

25
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Step 2

• Use a combinatorial model for Gn,s

� graphs with a forest Smillie-Vogtmann (1987):

A point in Gn,s can be associated with a pair of a graph G and a

forest f � G .

(G , f )

26
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Step 3

χ(An,s) =
�

σ

(�1)dim(σ)

| Stab(σ)|

27

dimension of resp
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Step 3

χ(An,s) =
�

σ

(�1)dim(σ)

| Stab(σ)|

=
�

graphs G
with s legs

rank(π1(G))=n

�

forests f⊂G

(�1)|Ef |

|AutG |

27



Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

χ(An,s) =
�

graphs G
with s legs

rank(π1(G))=n

1

|AutG |
�

forests f⊂G

(�1)|Ef |

� �� �

=:τ(G)

τ fulfills the identities τ(�) = 1 and

�

g⊂G
g bridgeless

τ(g)(�1)|EG/g | = 0 for all G �= �

� τ is an inverse of a character in a Connes-Kreimer-type

renormalization Hopf algebra. Connes-Kreimer (2001)
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TFT evaluation

Let T (z , x) =
�

n,s≥0

χ(An,s)z
1−n x

s

s!

then 1 =
1�
2πz

�

R

eT (z,x)dx

Using the short exact sequence, 1 � Fn � An,s � An,s−1 � 1

results in the action

1 =
1�
2πz

�

R

ez(1+x−ex )+ x
2
+T (−zex )dx

where T (z) =
�

n≥1 χ(Out(Fn+1))z
−n.

This gives the implicit result in Theorem B.
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Part 2: The integral Euler

characteristic
classical



Theorem A MB-Vogtmann (2019)

�(Out(Fn)) < 0 for all n � 2

�(Out(Fn)) � � 1�
2�

Γ(n � 3/2)

log2 n
as n � �.

� Indicates huge amount of homology in odd dimensions.

• Where does all this homology come from?

27



Low rank computations
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Euler characteristics of Kontsevich’s graph complexes

A missing piece:

complex rational: � integral: e

associative/Mg ,n Harer, Zagier 1986 Harer, Zagier 1986

commutative Kontsevich 1993 Willwacher, Živković 2015

Lie/Out(Fn) Kontsevich 1993 ?

Lie/Out(Fn) integral case ��(Out(Fn)) only known for n � 11.

Thanks to a supercomputer calculation by Morita 2014.

30
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Missing Euler characteristic of the Lie case

Theorem MB, Vogtmann 2022 (in prep)

�

n�1

�
1

1� z�n

��χ(Out(Fn+1))

=

�
�
�

k�1

�
d xk�
2�k/zk

�
� e

�
k≥1

zk

k

�
ck�

c2k
2
+

c2
k
2
�

x2
k
2
�(1+ck )

�
j≥1

µ(j)
j

log(1+cjk )

�

where c2k = x2k + z�k and c2k�1 = x2k�1 for all k � 1.

� Getzler-Kapranov type expression for ��(Out(Fn)).
(Can be evaluated up to n � 80 (vs 11 known values).)
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Theorem MB, Vogtmann 2022 (in prep)

lim
n��

��(OutFn)
�(OutFn)

= e�
1
4

In contrast to limg��
�χ(Mg )
χ(Mg )

= 1, Harer-Zagier 1986.
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Summary and open questions

Short summary:

• �(Out(Fn)) �= 0

• Much unexplained homology of Out(Fn) due to rapid growth

of ��(Out(Fn)).

Open questions:

• What generates it?

• The TFT analysis indicates a non-trivial ‘duality’ between

MCG(Sg ) and Out(Fn). Obvious candidate: Koszul duality (?)
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