
Bachelor Thesis

The forested graph complex

Jean-Luc Portner

supervised by
Prof. Dr. Thomas Willwacher, advisor

Dr. Michael Borinsky, co-advisor

Department of Mathematics
ETH Zürich
May 2022



1 Introduction

Since its beginning in the late 18th century, group theory has been one of the fundamental
concepts of mathematics and groups have been studied intensely ever since. Free groups are
the class of groups where no relations between the generators exist: The elements are words of
generators and their inverses. The group relation is given by concatenating words and reducing
them i.e. if two adjacent elements are inverse to each other they will be omitted. The free
group on n generators will be denoted by Fn. The importance of free groups arises from the fact
that every group is isomorphic to a quotient group of a free group. In particular, any finitely
generated group is isomorphic to a quotient group of Fn for some n.
Another way to approach a group G is to characterize its automorphism group Aut(G), as it
describes G’s symmetries. Aut(G) can be separated into the inner automorphism group Inn(G),
the group of automorphisms that arise from conjugation, and the outer automorphism group
Out(G), the quotient of Aut(G) by Inn(G).
Combining these two aspects, it is only natural that mathematicians intensely study the auto-
morphism group of Fn. The inner automorphism group is well understood and isomorphic to Fn

itself. However the structure of the outer automorphism group Out(Fn) remains for the most
part unknown. For the first free group we have that F1 ∼= Z and thus

Out(F1) = Out(Z) = GL1(Z).

For F2 Nielsen proved in [15] that Out(F2) ∼= GL2(Z). For higher groups, only the existence of
a surjection Out(Fn) → GLn(Z) can be guaranteed.
Historically, GLn(Z) has been studied by its action on the symmetric space SLn(R)/ SOn(R).
Due to the relation between Out(Fn) and GLn(Z), early attempts at studying the outer auto-
morphism group of Fn examined its action on SLn(R)/ SOn(R) induced by the above surjection.
However, this action is not proper, that is the preimage of a compact set under the group action
is not necessarily compact. Hence it behaves quite badly and a different approach was needed.
Therefore, Culler and Vogtmann introduced a new space Xn known as "Outer space" in [19]. To
describe this space we first have to introduce some basic concepts of graph theory.

1.1 Graph theory basics

Definition 1.1. A graph G is a finite 1-dimensional CW complex. The set of edges is denoted
by E(G), the set of vertices by V (G). We call an edge having the same start and end vertex a
loop.
We call a graph connected if the CW complex is connected in the topological sense. A graph is
n-edge-connected if it remains connected after removing n − 1 arbitrary edges.
For a vertex v of a graph G we call the number of incident edges valency or degree and denote
it by deg(v). A graph is said to be n-regular if every vertex has valency n.
For a subset Φ of the edges of G we denote by G/Φ the graph quotient, which is the quotient
space of the CW complex G over its topological subspace Φ.

Remark 1.2. Note that sometimes these types of graphs are called multigraphs, as they are
allowed to have loops as well as multiple edges between vertices. The word graph then normally
refers to simple graphs which do not allow multi-edges or loops.
In the context of algebraic topology however, multigraphs are needed and thus the word graph
here denotes multigraphs.
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Definition 1.3. A subgraph G′ of a graph G is a subcomplex of the CW complex G. Since sub-
complexes are themselves CW complexes of dimension smaller or equal to the original complexes
dimension, G′ itself is a graph.
A cycle in a graph G is a subgraph that is homeomorphic to S1. A tree is a connected graph
containing no cycles. A forest is a collection of disjoint trees.

Definition 1.4. Let G, H be two graphs. A map f : V (G) → V (H) is said to be a graph
isomorphism if f is a bijection such that

(u, v) ∈ E(G) ⇔ (f(u), f(v)) ∈ E(H).

Example 1.5. Consider the following graphs.
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Then G is 3-connected and 3-regular. Moreover, G is isomorphic to H. An isomorphism between
them is given by mapping the equally labelled vertices to each other. The graph quotient
G/{e, f, g} is given by J .

The following result gives the fundamental connection between graphs and free groups:

Theorem 1.6. Let G be a graph. Then its fundamental group π1(G) is isomorphic to a free
group.

A proof of this theorem will be given later at the beginning of section 2.1.

Definition 1.7. By the theorem, it makes sense to define the rank of a graph rank(G) as the
rank of its fundamental group.
Finally, a metric graph is a finite connected graph where each edge is assigned a positive real
value, its length. Moreover, we endow the edges with the path metric i.e. the distance between
two points is the length of the shortest path between them. Here the length of the path is the
sum of the lengths of the edges that are (partially) traversed.

1.2 Outer space

We continue with the study of Out(Fn) and the aforementioned Outer space. For this we follow
Vogtmann’s survey article [17].
To define Outer space, we first consider the graph Rn given by one vertex and n edges each
forming a loop. By Theorem 1.6 we can identify π1(Rn) with the free group Fn. We do this
by orienting the edges of Rn and identifying them with the generators of Fn x1, . . . , xn. Then
every reduced word w ∈ Fn corresponds to a closed reduced walk in Rn, given by traversing
the edges in the same order as their assigned generators appear in w. An automorphism ϕ on
Fn corresponds to a homotopy equivalence sending the loop corresponding to xi to the loop
identified with ϕ(xi).
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Definition 1.8. Let M be the set of pairs (g, G) where G is a finite metric graph with vertex
valency ≥ 3 and a total edge length of one. Moreover g is a homotopy equivalency g : Rn → G

called the marking of G. Now we define Outer space Xn as the quotient space of M over the
equivalence relation given by (g, G) ∼ (g′, G′) if and only if there exists an isometry h : G → G′

such that g ◦ h is homotopic to g′.

A point (g, G) of Xn can be represented as follows: We choose a maximal forest T on G and
orient all edges in G \ T . Moreover we label these edges with an element of Fn such that the
labelling satisfies the following: If f : G → Rn is the map determined by the labels by sending
T to the vertex of Rn and sending each edge in G \ T to the corresponding loop in Rn, then f

is a homotopy inverse to g. This is the case exactly when the words labelling the edges form a
basis of Fn. An example is given in Figure 1, where the orange edges represent the forest T .

x1 x2

x3x−1
2

Figure 1: A point of Outer Space

To define a topology on Xn we consider the set C of conjugacy classes of Fn. These classes are
the cyclically reduced words, that is words for which every cyclic permutation is reduced. Now
we can define a map from Outer space Xn to the infinite projective space RPC . For a fixed
marked graph (g, G) the map assigns to each cyclically reduced word w the length of the unique
cyclically reduced closed walk in G homotopic to g(w). As this map is injective, we can view
Xn as s subspace of RPC and thus give Xn the subspace topology.
This definition might seem quite ad hoc, however with it Xn decomposes nicely into a disjoint
union of open simplices: Every marked graph (g, G) belongs to the open simplex containing
all graphs that can be reached by varying the non-zero edge lengths such that the total edge
length of G remains 1. The faces of the simplex are then the marked graphs where one edge
of (g, G) has been fully contracted. For a marked graph with k + 1 edges, the corresponding
simplex is k-dimensional. Of course, a contracted edge can again be extended in multiple ways
thus connecting the different simplices. An example is given in the figure below1 on the right.
On the left, we see a depiction of X2.

(a) Outer space X2 (b) Simplices in X2

1Both figures are taken from [17]
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Moreover, the identification works the other way round i.e. every open simplex in Xn is a face
of a maximal simplex that corresponds to a trivalent marked graph. Taking the argument from
the proof of Theorem 2.12, which will be presented in section 2.2, we see that the dimension of
Xn is equal to 3n − 4.
Now with the Outer space defined, we can consider the right group action of Out(Fn) on Xn:
Every ϕ ∈ Out(Fn) induces a map f : Rn → Rn by mapping the edge labelled x to the edge
labelled ϕ(x). Then the right group action is defined by (g, G)ϕ = (g ◦ f, G).
An inconvenience that arises is that the quotient of Xn by Out(Fn) is not compact. Resolving
this leads us to the next construction which comes in the next section.

1.3 The spine of Outer space

The beginning of this section follows Culler and Vogtmanns original definition from [19]. In the
latter half, we adhere to [18]. We first need the following definition:

Definition 1.9. A subcomplex B of a simplicial complex A is called full if for every simplex
∆ ∈ B whose vertices are contained in A ∆ is also a simplex of A.

Now we can define a more convenient and simpler version of Xn, reduced Outer space, and denote
it by Yn. The points in the subspace Yn are the marked graphs (g, G) that do not contain any
separating edges, i.e. no edges e such that G \ e is disconnected. An equivariant deformation
retraction from Xn to Yn is given by shrinking the lengths of the separating edges to zero while
uniformly extending the lengths of the other edges to preserve the total edge length of 1. Finally,
we can define the spine Kn as follows:

Definition 1.10. Let Ỹn be the barycentric subdivision of Yn. Then the spine of outer space
Kn is defined as the maximal full subcomplex of Ỹn which is disjoint from the boundaries of
the open simplices in Yn. The vertices of Kn are the barycenters of simplices in Yn i.e. the
marked graphs whose edges are of equal length. The deformation retraction from Yn to Kn is
given by collapsing every simplex τ in Ỹn to the face of τ contained in Kn. This can be done
equivariantly. Therefore Kn can be thought of as ignoring the metric structure on Yn and only
focusing on its combinatorial structure.

Going the other way, consider two vertices (g, G) and (g′, G′) in Kn. Then the open simplex in
Xn determined by (g, G) is a face of the one determined by (g′, G′) exactly when G is obtained
from G′ by collapsing a forest of edges in G′ and g is homotopic to the composition of g′ with
the collapsing map. This collapsing is also called a forest collapse. It follows that Kn has the
structure of a simplicial complex where a k-simplex is a chain of k forest collapses.
With this in mind we can determine the dimension of Kn: As collapsing an edge decreases
the number of vertices by 1 a similar argument as in the proof of Theorem 2.12 shows that
dim(K) = 2n − 3. An example of a part of the spine of X2 is given in Figure 32.
Let us come back to the right action of Out(Fn) on Outer space: The action on Xn extends
to a simplicial action on Kn. Culler and Vogtmann proved in [19] that this action has finite
stabilizers. Thus the rational homology of Out(Fn) can be computed as the quotient of Kn by
Out(Fn):

H•(Out(Fn),Q) ∼= H•(Kn/ Out(Fn),Q).

To calculate this homology, we turn Kn into a cube complex i.e. a CW complex where the
cells are homeomorphic to Euclidean cubes and the attaching maps identify faces with lower-
dimensional cubes via homeomorphisms. For a forest Φ in G with k edges we can now define

2This figure is taken from [17]
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Figure 3: A section of the spine of Outer space X2.

its k-cube: From Φ we get a chain of k-forest collapses by collapsing each edge in Φ at a time.
This yields a k-simplex. Collapsing the edges in another order yields another k-simplex. All
these different k-simplices can now be fit together to triangulate a k-dimensional cube. Thus
every k-cube is given by a graph G and a forest Φ of size k. The faces of dimension k − 1 are
the graphs obtained from G where one edge in Φ has been collapsed. An example is shown in
Figure 4. Here the orange edges represent the edges that are being contracted along that face.

1 2
2

1

1 2

1 2

2

1

1 2

Figure 4: A cube in the spine K3

Let us now view Kn as this cube complex with one cube for every tuple (g, G, Φ). We can define
an orientation on the cube by ordering the edges of Φ such that odd permutations reverse the
orientation. Then the rational homology of Kn/ Out(Fn) can be computed from a chain complex
with one generator for each pair (G, Φ) that has no orientation-reversing automorphism.

1.4 The forested graph complex

The chain complex of pairs (G, Φ) computing Hk(Kn/ Out(Fn);Q) is generally known as the
forested graph complex and has been introduced by Conant and Vogtmann in [6]. In this
introductory section, we will describe the original construction. In the later section 2.2, we are
going to introduce a more practical hands-on but equivalent definition from [4].

Definition 1.11. A forested graph is a pair (G, Φ) of a finite connected trivalent graph G and
an oriented forest Φ containing all vertices of G. The orientation on the forest is given by an
ordering of its edges where interchanging any two edges reverses the orientation.

We now denote by f̂Gk the vector space spanned by forested graphs with forest size k modulo
the relations (G, Φ) = −(G, −Φ).
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If we consider a forested graph (G, Φ) and we collapse an edge e in Φ then the obtained graph
(Ge, Φe) has exactly one 4-valent vertex. As the image below shows, there are exactly two other
graphs whose edge collapse leads to the graph (Ge, Φe).

e

3 4

21

3 4

21

3 4

21

3 4

21

(G, Φ) (G′, Φ′) (G′′, Φ′′)

(Ge, Φe)

e e

Figure 5: The numbers represent the four parts of the graph that get con-
nected at e. The graphs G, G′, G′′ then represent the three different ways
how this can happen so that collapsing e leads to Ge.

If we denote those two by (G′, Φ′) and (G′′, Φ′′) then we call the vector

(G, Φ) + (G′, Φ′) + (G′′, Φ′′).

the basic IHX relator associated to (G, Φ, e). We denote by IHXk the subspace of f̂Gk spanned
by all basic IHX relators and define fGk as the quotient space f̂Gk/IHXk.
Finally, we can define a boundary map ∂ : fGk → fGk+1 induced by the map on f̂Gk given by

∂E(G, Φ) =
∑

(G, Φ ∪ e)

where we sum over all edges in G \ Φ such that Φ ∪ e is still a forest and e gets the label k + 1
in the orientation.
One can check that ∂E is a boundary map that is ∂2

E = 0. With this shown, we get a chain
complex fG• with boundary map ∂E . The rational homology of this complex computes the
rational homology of Out(Fn) as explained at the end of the previous section.

1.5 The known homology of Out(Fn)

To conclude this introduction we try to summarize the known rational homology of Out(Fn).
As we only consider the rational homology, we will omit the field Q. We first need to introduce
two concepts:
Definition 1.12. If a group G contains a torsion-free subgroup K of finite index, then the
virtual cohomological dimension vcd(G) is the cohomological dimension of K, i.e. the smallest
number n ∈ N such that Hk(K) = 0 for all k > n. It is independent of the choice of the
subgroup.
Moreover, a series of groups G1 ⊆ G2 ⊆ . . . is called homologically stable if for every k there
exists a N such that

Hk(Gn) ∼= Hk(Gn+1) for all n ≥ N

that is for n large enough the homology is independent of n.

Culler and Vogtmann showed in [19] that Hk(Out(Fn)) is finitely generated and vanishes for
k greater than vcd(Out(Fn)), which is 2n − 3. This gives us an upper bound on homology.
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Furthermore, they showed that the spine Kn is path-connected from which we conclude that
H0(Out(Fn)) = Q.
On the other hand, homological stability was proven for Out(Fn) for n ≥ 5(k + 1)/4 by Hatcher
and Vogtmann in [11, 12]. Galatius proved in [7] that these groups are in fact zero, giving us a
lower bound.
Only five of the non-trivial homology groups are explicitly known. For the groups H4(Out(F4)),
H8(Out(F6)) and H12(Out(F8)) it is known that the Morita classes do not vanish and in fact,
as these homology groups have dimension 1, they are generated by the Morita classes. We will
expand on this in section 3. Ohashi showed in [16] that all other groups for n ≤ 6 are trivial.
The only other known groups were determined by Bartholdi in [2] and are H8(Out(F7)) and
H11(Out(F7)). He also showed that all other homologies for n = 7 are trivial. Figure 6 has been
adapted from Figure 1 in [3] and summarizes these results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
k

H0(Out(Fn)) = Q

Hk(Out(Fn)) = 0
above vcd
k > 2n− 3

Hk(Out(Fn)) = 0 below

stable range k ≤ 4
5n− 1

Figure 6: Homology classes of Out(Fn). The circles represent the Morita classes and
are filled in if they are known to be non-trivial. The triangles are Bartholdi’s non-
trivial classes. The orange shaded region represents the area where the homology is
known to be trivial. The grey shaded area is the unknown homology.

The Euler characteristic of a topological space is the alternating sum over the rank of the
homology groups. Computations of it for Out(Fn) were done by Morita, Sakasai and Suzuki in
[13, 14] for n ≤ 11 and are shown in the table below.

n 3 4 5 6 7 8 9 10 11 12
χ(Out(Fn)) 1 2 1 2 1 1 −21 −124 −1202 ?

If the trend of rapidly increasing negativity starting at n = 9 continues, it would imply that
there are a lot of odd-dimensional homology classes for n ≥ 9. The only known odd-dimensional
homology class however is Bartholdi’s H11(Out(F7)). Thus we see that the homology of Out(Fn)
still remains mostly unknown.
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2 The forested graph complex

Before we can introduce the forested graph complex we are going to prove a few more results
about graphs.

2.1 Further results on graphs

We begin this section by proving Theorem 1.6 which is stated again below. Afterwards, we
expand on the concept of the rank and the degree of a graph and prove several identities.
Theorem 1.6. Let G be a graph. Then its fundamental group π1(G) is isomorphic to a free
group.

Proof. The following proof is from [10, p. 43f.]. Let G be a graph. W.l.o.g. G is connected
as else we consider each connected component separately. Let T be a spanning tree on G i.e.
T is a tree containing every vertex of G. Now choose for every eα ∈ E(G) \ E(T ) an open
neighbourhood Aα of E(T ) ∪ eα, that deformation retracts onto T ∪ eα. The intersection of
such Aα deformation retracts onto T and is thus contractible. Moreover, as G is connected
as a graph, Aα and T are path-connected. Now the Aα form an open cover of G and as T is
simply connected by Van Kampen’s theorem, we get that π1(G) = ∗απ1(Aα). Finally, every
Aα deformation retracts onto S1 and thus π1(Aα) = Z. Now there are exactly |E(G)| − |E(T )|
many Aα, which as T is a spanning tree and hence |E(T )| = |V (G)| − 1 results in π1(G) being
free on |E(G)| − |V (G)| + 1 generators.

To understand the rank better we will need the following definitions:

Definition 2.1. For a finite CW complex X the Euler characteristic is defined as the alternating
sum

χ(X) = k0 − k1 + k2 − . . .

where ki denotes the number of cells of dimension i in the CW complex X.

As graphs are 1-dimensional we get χ(G) = k0 − k1 which is equal to χ(G) = |V (G)| − |E(G)|.

Definition 2.2. Let G be a graph. Then its cycle space is the set of even-degree subgraphs of
G i.e. the subgraphs of G whose vertices have even degree. This space forms a vector space over
F2 where the vector addition is given by the symmetric difference of two or more subgraphs.
A basis of this space is called cycle basis and two cycles are independent if they are linearly
independent in the vector space.

Remark 2.3. The cycle space is equal to the first homology group of G with coefficients in F2
i.e. H1(G,F2).

The following proposition relates the rank to different invariants and gives an easy way to
compute it:

Proposition 2.4. Let G be a connected graph. Then the following are equal:
1. The rank of G.
2. The number of independent cycles in G i.e. the size of the cycle basis of G.
3. The first Betti number i.e. the rank of H1(G).
4. 1 − χ(G) = |E(G)| − |V (G)| + 1.

For the proof of this Proposition we will need the following lemma:
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Lemma 2.5. Let A be a set. Then the abelianization of the free group on A is isomorphic to
the free abelian group on A.

Proof. Consider the space X = ∨
a∈A S1. By Van Kampen’s theorem π1(X) ∼= ∗a∈AZ, that is

π1(X) is isomorphic to the free group on A. By the relative homeomorphism theorem we have
H1(X) ∼=

⊕
a∈A H1(S1) ∼=

⊕
a∈A Z, that is H1(X) is isomorphic to the free abelian group on A.

Using Hurewicz theorem we get that the abelianization of π1(X) is isomorphic to H1(X) and
thus the desired statement.

Proof of Proposition 2.4. (1) = (4): This was shown in the proof of Theorem 1.6.
(1) = (3): From Hurewicz Theorem we get that the abelianization of π1(G) is equal to H1(G)
and thus by the previous Lemma that the rank of π1(G) is equal to the rank of H1(G) which is
the first Betti number.
(4) = (2)3: Let T be a spanning tree on G. Consider the sets Aα given by eα ∪ T for eα ∈
E(G) \ E(T ). Each of them is a deformation retraction onto a cycle in G. Let Z(T ) be the
set of cycles obtained in this way. Then Z(T ) is independent as each cycle in Z(T ) contains an
edge not contained in any other cycle of Z(T ). Moreover, every cycle Z in G can be written as
the symmetric difference over the cycles corresponding to the edges in (E(G) \ T ) ∩ Z. Thus
Z(T ) spans the cycle space and consequently is a cycle basis. Now the size of Z(T ) is given by
|E(G)| − |V (G)| + 1 and thus we conclude the proof.

Finally, we introduce the notion of the degree of a graph, also sometimes called excess.

Definition 2.6. Let G be a connected graph of rank n with vertex-valency ≥ 3. Its degree is
defined by

deg(G) :=
∑

v∈V (G)
(deg(v) − 3).

Proposition 2.7. Let G = (V, E) be a graph of rank n. Then we have the following identities:
1. deg(G) = 2|E| − 3|V |
2. |V | = 2n − 2 − deg(G)
3. |E| = 3n − 3 − deg(G)
4. G is 3-regular ⇔ deg(G) = 0.

Proof. By counting half edges we get 2|E| = ∑
v∈V deg(V ). Combining this with the definition

of the degree we get the first identity:

deg(G) =
∑

v∈V (G)
(deg(v) − 3) =

∑
v∈V

deg(v) − 3|V | = 2|E| − 3|V |.

Using Proposition 2.4 and the first identity we have

2n − 2 − deg(G) = 2|E| − 2|V | + 2 − 2 − 2|E| + 3|V | = |V |
3n − 3 − deg(G) = 3|E| − 3|V | + 3 − 3 − 2|E| + 3|V | = |E|

which proves the second and the third identity. The last statement follows, as every element in
the sum of the degree is non-negative, as every vertex has valency ≥ 3. Thus deg(G) = 0 if and
only if every term is 0 and therefore if and only if every vertex has valency 3.

3This proof is based on Harary’s proof in [9, p. 37-40].
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2.2 Forested graphs and the boundary map

As stated in the introduction, the forested graph complex has first been introduced by Conant
and Vogtmann in [6]. Here, however, we will introduce the simplified construction and definition
of the forested graph complex given by Conant and Vogtmann in [4]. Very useful in the general
understanding of what a graph complex is and how the boundary map acts was Bar-Natan’s
and McKay’s draft [1]. Inspired by this, similar examples for the forested graph complex are
presented.
Let us denote by Sn the symmetric group of degree n.

Definition 2.8. An admissible graph of rank n is a 2-edge-connected graph G with vertex-
valency ≥ 3 whose fundamental group is isomorphic to Fn.

We often abbreviate an admissible graph of rank n by a graph.

Definition 2.9. Let G = (V, E) be a graph. An ordering on its edges is a bijective function σ

from E to {1, . . . , |E|}. Notice that S|E| acts on σ by π ◦ σ for π ∈ Sn. We call the tuple (G, σ)
an ordered graph and note that S|E| acts on (G, σ) by π(G, σ) = (G, πσ) for π ∈ S|E|.
A forested graph is a triple (G, Φ, σ) where G is an admissible graph, Φ is a subset of edges that
spans a forest on G and σ is an ordering on Φ i.e. σ : Φ → {1, . . . , |Φ|}.
A map f between two forested graphs (G, Φ, σ) → (H, Ψ, τ) is said to be a forested graph
isomorphism if f is a graph isomorphism on G, f(Φ) = Ψ and σ = τ ◦ f

We now want to construct the forested graph complex. For this we remember the notion of a
graded vector space:

Definition 2.10. A graded vector space is a vector space V with a decomposition (Vk)∞
k=0 such

that
V =

∞⊕
k=0

Vk.

We now consider the Q-vector space C spanned by isomorphism classes of forested graphs,
subject to the relation

(G, Φ, π ◦ σ) = sgn π · (G, Φ, σ) for all π ∈ S|Φ|.

Under this relation we call σ an orientation. Observe that if (G, Φ, σ) ≃ (G, Φ, π ◦ σ) for an odd
permutation π then (G, Φ, σ) ≃ (G, Φ, π ◦ σ) = −(G, Φ, σ) and thus (G, Φ, σ) = 0 in C.
We can define the following three gradings on C:

• Let Cn ⊆ C be the subspace spanned by forested graphs of rank n. Then clearly Cn∩Cm =
∅ for n ̸= m and as every graph has a rank, we get that the Cn form a grading on C.

• Let Ck ⊆ C be the subspace spanned by forested graphs (G, Φ, σ) with |Φ| = k. Clearly,
this also yields a decomposition of C into a direct sum and thus gives another grading on
C.

• Let Cd ⊆ C be the subspace spanned by forested graphs of degree d. Once again this
yields a grading on C.

In the following, we will mostly be concerned with the first two gradings. In particular, we will
consider the double-grading Cn

k , where k denotes the forest size and n the rank.

Example 2.11. Consider the graphs G, J from Example 1.5. Then G and J are admissible
graphs of rank 4 and 3. Thus if we equip them with ordered forests (Φ, σ), (Ψ, τ) as below (where
the orange edges represent the forest and the numbers the orientation), we get forested graphs
in C4

4 and C3
2 respectively.
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Observe, that (J, Ψ, τ) = 0 in C3
2 , since (12) is an odd permutation and (12)(J, Ψ, τ) is isomorphic

to (J, Ψ, τ) via the isomorphism mirroring vertices along the vertical line passing through the
vertices labelled 1 and 4.
(G, Φ, σ) however is not trivial as the automorphism group is given by the identity, mirroring
along the vertical, exchanging inner and outer vertices and their composition. None of these
automorphisms induce an odd permutation and hence (G, Φ, σ) does not vanish.

Before we construct the chain complex we show that the Cn are finitely generated and thus so
are the Cn

k .

Theorem 2.12. For all n, Cn is finitely generated and Cn
k = 0 for all k > 2n − 3.

To prove this theorem we first need the following lemma:

Lemma 2.13. For n, m ∈ N There are only finitely many admissible graphs G = (V, E) with
|V | ≤ n vertices and |E| ≤ m edges.

Proof. Every graph on n vertices can be written as a n×n-incidence matrix and each entry is ≤ m

if the graph has maximally m edges. Thus there are maximally mn2 many different incidence
matrices for graphs with n vertices and maximally m edges. As every graph corresponds to
an incidence matrix, this also gives an upper bound on the number of different graphs with n

vertices and maximally m edges.
Thus the maximal possible number of admissible graphs with ≤ n vertices and ≤ m edges is
bounded by

n∑
k=1

mk2

which is finite.

Proof of Theorem 2.12. By counting half edges we have

2|E| =
∑
v∈V

deg v.

Using that admissible graphs have vertex-valency ≥ 3 and rearranging gives |E| ≥ 3
2 |V |. From

Proposition 2.4 we get that |E| = |V | + n − 1. Combining the two yields

|V | + n − 1 ≥ 3
2 |V | ⇔ 2(n − 1) ≥ |V |

and plugging in the result in the identity from Proposition 2.4 results in |E| ≤ 3(n − 1).
Thus by the above lemma, we have that there are only finitely many graphs G = (V, E) with
|V | ≤ 2(n − 1) and |E| ≤ 3(n − 1). As each graph only has a finite number of different forests
we get that Cn is finitely generated.
That Cn

k = 0 ∀k > 2n − 3 follows from the bound on the number of vertices and the fact that a
forest in a graph has maximally |V | − 1 edges.

11



Remark 2.14. Notice that for Cn to be finitely generated the constraint of vertex-valency ≥ 3
in the definition of admissible graphs is necessary. As else we can consider the following family
of graphs Gn

j where the leftmost polygon contains j ≥ 2 vertices:

(n−1)−times︷ ︸︸ ︷
1

Gn
j

By Proposition 2.4 we see that each Gn
j has rank n. Moreover the Gn

j are 2-edge connected and
do not vanish, as no automorphism except the identity exists for the given forest. Finally, for
i ̸= j Gn

i and Gn
j are not isomorphic as they have different numbers of vertices/edges. Thus for

every n we find infinitely many different non-zero graphs in Cn.
Remark 2.15. The bound on the Cn

k can also not be improved as the graph G from Example
2.11 with the tree extended by the edge between the vertex labelled 1 and 4 has rank 4 and tree
size 5 which equals 2 · 4 − 3. Moreover G has again no odd automorphisms and thus does not
vanish.

To construct the forested graph complex we fix the rank n and define the differential as follows:
Definition 2.16. Let (G, Φ, σ) = (G, {e1, . . . , ek}, σ) be a forested graph. Then let ∂C , ∂R :
Cn

k → Cn
k−1 be given by

∂C(G, Φ, σ) :=
k∑

i=1
(−1)i(G/ei, Φ \ {ei}, σei),

∂R(G, Φ, σ) :=
k∑

i=1
(−1)i(G, Φ \ {ei}, σei)

where σei : Φ \ {ei} → {1, . . . , k − 1} is given by

σei(e) :=

σ(e) if σ(e) < i

σ(e) − 1 if σ(e) > i
.

Notice that the case σ(e) = i cannot happen as ei is not contained in Φ \ {ei}. Finally define
the boundary map ∂ := ∂C − ∂R.
Proposition 2.17. ∂ is well-defined and ∂2 = 0.

Proof. For better readability, we will omit the orientation σ in the proof. We prove the result
in three steps:
Step 1: Contracting an edge of a graph does not change the Euler characteristic as both the
vertex number and the edge number decrease by one. Thus ∂C preserves the rank of the graph.
Moreover, the vertex-valency stays ≥ 3 and the graph continues to be 2-edge-connected. Hence
it is admissible. Furthermore, ∂C as well as ∂R remove one edge from each forest, thus decreasing
k by 1. Moreover, both maps are compatible with the quotient in Cn and are thus well-defined
from Cn

k to Cn
k−1 and so is ∂.

Let (G, Φ) ∈ Cn
k be a forested graph with Φ = {e1, . . . , ek} and denote the edges in Φ \ {ei} by

{e′
1, . . . , e′

k−1}, where e′
j = ej for j < i and e′

j = ej+1 for j > i. For the consecutive steps we
need the following observations:

(G/ei)/e′
j =

(G/ej)/e′
i−1 if i > j

(G/ej+1)/e′
i if i ≤ j

and (Φ\{ei})\{e′
j} =

(Φ \ {ej}) \ {e′
i−1} if i > j

(Φ \ {ej+i}) \ {e′
i} if i ≤ j

12



Step 2: Claim: ∂2
C = 0 and ∂2

R = 0
We compute:

∂2
C = ∂C

k∑
i=1

(−1)i(G/ei, Φ \ {ei}) =
k∑

i=1

k−1∑
j=1

(−1)i+j((G/ei)/e′
j , (Φ \ {ei}) \ {e′

j})

=
∑
j<i

(−1)i+j((G/ei)/e′
j , (Φ \ {ei}) \ {e′

j}) +
∑
i≤j

(−1)i+j((G/ei)/e′
j , (Φ \ {ei}) \ {e′

j}) (⋆)

We claim that the two sums cancel. For this, first apply the observations above to the first sum
and then change variables by setting l = j and m = i − 1 to obtain:∑

j<i

(−1)i+j((G/ei)/e′
j , (Φ \ {ei}) \ {e′

j}) =
∑
j<i

(−1)i+j((G/ej)/e′
i−1, (Φ \ {ej}) \ {e′

i−1})

=
∑
l≤m

(−1)l+m+1((G/el)/e′
m, (Φ \ {el}) \ {e′

m})

This last expression is the same as the second sum in (⋆) but with opposite sign. Thus they
cancel and we have shown ∂2

C = 0. The same argument shows that ∂2
R = 0.

Step 3: Claim: ∂C∂R − ∂R∂C = 0
For the mixed terms, we compute

∂R∂C =
k∑

i=1

k−1∑
j=1

(−1)i+j(G/ei, (Φ \ {ei}) \ {e′
j})

=
∑
j<i

(−1)i+j(G/ei, (Φ \ {ei}) \ {e′
j}) +

∑
i≤j

(−1)i+j(G/ei, (Φ \ {ei}) \ {e′
j}) (∗)

and

∂C∂R =
k∑

i=1

k−1∑
j=1

(−1)i+j(G/e′
j , (Φ \ {ei}) \ {e′

j})

=
∑
j<i

(−1)i+j(G/e′
j , (Φ \ {ei}) \ {e′

j}) +
∑
i≤j

(−1)i+j(G/e′
j , (Φ \ {ei}) \ {e′

j})

(♡)=
∑
j<i

(−1)i+j(G/ej , (Φ \ {ej}) \ {e′
i−1}) +

∑
i≤j

(−1)i+j(G/ej+1, (Φ \ {ej+1}) \ {e′
i})

(†)=
∑
l≤m

(−1)m+l+1(G/el, (Φ \ {el}) \ {e′
m}) +

∑
m<l

(−1)m+l−1(G/el, (Φ \ {el}) \ {e′
m}) (∗∗)

Where in (♡) we used that if j < i then e′
j = ej and if i ≤ j then e′

j = ej+1, as well as the
observation above. In (†) we used the substitution m = i − 1, l = j on the left and m = i,
l = j + 1 on the right sum. Comparing the sums in (∗) and (∗∗) we see that they differ by a
sign and thus cancel. Hence ∂C∂R − ∂R∂C = 0.
Combining step 2 and 3 we get:

∂2 = (∂C − ∂R)2 = ∂2
C − (∂C∂R + ∂R∂C) + ∂2

R = 0

Thus the spaces (Cn
• ) with the differential ∂• form a chain complex.

Example 2.18. Once again we consider the graph (G, Φ, σ) from Example 2.11 and calculate
its boundary:
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1 2
43 =

1
32

1
32 +−

1
32= 4∂C

H1 H2

1 2
3

1 2
3+−

H3 H4 H2

Where we used that −H1 is equal to H2 by mirroring along the vertical and applying (23), −H3
is equal to H2 by exchanging inner and outer vertices, mirroring along the vertical and applying
(13) and H4 is equal to H2 by exchanging inner and outer vertices and applying (13)(23). And
for ∂R we get:

1 2
43 =∂R

1
32 +

1
32 −

2
3

1
+

2
3

1
= -4−

G4G3G2G1

2
3

1

G3

Where we have used that −G1 is equal to −G3 by exchanging inner and outer vertices and
applying (13)(12), G2 is equal to −G3 by exchanging, mirroring along the vertical and applying
(13) and G4 is equal to −G3 by mirroring along the vertical and applying (12).
Thus we can conclude that ∂G = 4H2 − 4G3. Moreover, we have that H2 − G3 ∈ Im ∂ and as
∂2 = 0 we also have H2 − G3 ∈ Ker ∂

Remark 2.19. As the example above shows, the calculation of the boundary, especially identifying
isomorphic graphs and finding odd automorphisms, quickly becomes quite tedious. Therefore it
is best to leave this to the computer and a python implementation can be found in the appendix.

Coming back to the forested graph complex Cn, it can be viewed as a cubical complex in a
similar way to the spine of Outer space in section 1.3: The k-cubes are given by graphs (G, Φ, σ)
with forest size k and the faces are k−1-cubes obtained from collapsing an edge in Φ or removing
an edge from the forest Φ. Collapsing the edge e ∈ Φ is on the opposite side of removing e from
Φ on the k-cube. An orientation on the cube is induced by the signs from the boundary maps
∂C and ∂R.
To visualize this construction we consider the following example:

Example 2.20. Consider the graph J from Example 1.5 with the forest Φ given by an edge
between the top and middle vertex and between the left and right vertex. Then its 2-dimensional
cube is given as below:

2

1

2 2

1

1
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3 Morita cycles

In this section we are going to show that a cycle exists in every Cm
2m−4 for m ≥ 4. For this we

define the Morita graphs and show that there exists a chain of these graphs that vanishes under
the boundary ∂.

Definition 3.1. A Morita graph Mn(σ) for n ∈ N≥3, σ ∈ Sn is a forested graph (G, Φ, τ) defined
as follows: G consists of two polygons with n vertices, each of which is connected to precisely
one vertex of the other polygon. The vertices are labelled from 1 to n on one polygon and n + 1
to 2n on the other, then the connecting edges between them are given by (i, σ(i) + n) i.e. σ

describes how the edges connecting the two polygons are permuted.
The forest Φ is given by the edges (i, i + 1) for i ∈ {1, . . . , n − 1, n + 1, . . . , 2n − 1} i.e. the forest
consists of two linear trees of size n − 1 each of which is obtained by removing one edge from
the corresponding polygon. Finally, the ordering τ is given by

τ((i, i + 1)) =

i for 1 ≤ i ≤ n − 1
i − 1 for n + 1 ≤ i ≤ 2n − 1

.

Notice that for all even n the graph Mn(σ) has an odd automorphism which is given by exchang-
ing the two polygons and applying the permutation (1 n) . . . (n − 1 2n − 1) to the orientation.
Thus those Morita graphs vanish. As Mn(σ) has 2n vertices and 3n edges by Proposition 2.4
it has rank n + 1. Furthermore, Mn(σ) is clearly an admissible graph and thus Mn(σ) ∈ Cn+1.
Moreover as the forest size is 2n − 2 Mn(σ) is in Cn+1

2n−2

To give a better understanding of this definition we give the following example:

Example 3.2. Below is a Morita graph of order 5 given by the permutation (12)(345).

1 5

6

7

8

2

3

4

The following result proves that there exists a cycle in every Cn for n ≥ 4.

Theorem 3.3. For odd n ∈ N≥3 let

Zn :=
∑

σ∈Sn

sgn(σ)Mn(σ).

Then ∂2(Zn) = 0 and we call Zn a Morita cycle.

We prove this statement in two parts first for ∂C and then for ∂R, from which the final result
follows.

Proof for ∂C . Let (H, Ψ, η) be an element of the chain ∂CZn. Then as it is an element of the
boundary of some Morita graph it has to have precisely one vertex of degree 4. W.l.o.g. we can
assume that this vertex is in the polygon containing the edge with the label 1, as else we can
apply the even permutation (1 . . . 2n − 2)n−1 to the orientation.
Let k be the label of the degree 4 vertex. An example is shown in Figure 7 on the left for k = 2.
Then there exist exactly two Morita graphs in whose boundary H lies and whose induced vertex
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labeling corresponds to the one of H. One graph is obtained by splitting the vertex k into two
vertices labeled k and k + 1. This is done so that each vertex connects to one edge from the
forest and to one edge from the other polygon. Moreover, the two new vertices get connected
by an edge which is also added to the forest and given the number k in the ordering. All other
edges with ordering number > k get their ordering number increased by one. Let us denote
this Morita graph by Mn(σ). The other Morita graph is obtained in the same way, however the
two edges connecting to the other polygon are permuted i.e. this graph equals Mn(σ(k k + 1)).
Examples for both are also shown in Figure 7 in the middle and the right respectively.

1 5

6

7

8

2

3

4

1 4

5

6

7

2

3 4

5

6

7

8

3

1

2

Figure 7: An element of the sum Zn with its two possible pre-images under ∂C .

We see that the two permutations σ and σ(k k + 1) have opposite parity and thus Mn(σ)
and Mn(σ(k k + 1)) have opposite signs in Zn. Finally we take the boundary and get for
the elements corresponding to H that the one in ∂C(Mn(σ)) is H with sign (−1)k and the
element in ∂C(Mn(σ(k k + 1)) is also H with sign (−1)k. Thus the opposite signs of Mn(σ) and
Mn(σ(k k + 1)) in Zn carry over and hence cancel each other.
As H was an arbitrary element of Zn we get that every summand has coefficient 0 and that Zn

vanishes.

Proof for ∂R. Let (H, Ψ, η) be an element of the chain ∂RZn. Then H is a Morita graph whose
forest Ψ is missing one edge in one of its trees. We denote by σ the edge permutation of H

between its two polygons as given in the definition of Morita graphs. W.l.o.g. we can assume
that the tree with the missing edge contains the edge with the label 1 as else we can apply the
even permutation (1 . . . 2n − 3)n−2 to the orientation.
Let (j, j + 1) denote the extra edge missing from Φ. An example is shown in Figure 8 on the
left for j = 2. Then there are exactly two Morita graphs in the sum which have H in their
boundary and whose induced vertex labelling corresponds to the one of H. We get one graph
where the edge (j, j + 1) has been added to the forest with ordering number j. All other edges
with ordering number > j get their ordering number increased by one. Thus this this graph
equals Mn(σ). For the other Morita graph the edge (1, n − 1) has been added to the forest and
the ordering is given by

τ((i, i + 1)) =


i − j for j + 1 ≤ i ≤ n − 1
n − j + i for 1 ≤ i ≤ j − 1
i − 1 for n + 1 ≤ i ≤ 2n − 1

and τ(1, n − 1) = n − j

i.e. the numbering starts with 1 at the edge (j + 1, j) and increases until it reaches n − 1 on the
edge (j − 1, j). The ordering on the other polygon has not been altered. Examples for both are
also shown in Figure 8 in the middle and the right respectively.
Notice that the second graph is not part of Zn as the vertex labelling and the forest ordering
do not correspond anymore i.e. the edge with label k is not given by (k k + 1). To resolve
this we have to change the vertex labelling which induces the permutation (1 . . . n)j on σ. Thus
the element in the sum corresponding to this graph is given by Mn(τ) := Mn(σ(1 . . . n)j). As
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1 5

6

7

8

2

3

4

1 4

5

6

7

2

3

4 5

6

7

8

3

1

2

Figure 8: An element of the sum Zn with its two possible pre-images under ∂R.

(1 . . . n) for n odd has even parity τ and σ have the same parity and thus Mn(τ) and Mn(σ)
have the same sign in the sum.
Finally, taking the boundary, the elements corresponding to H have different orientations. The
element in ∂R(Mn(σ)) is exactly H with sign (−1)j . The element in ∂R(Mn(τ)) has sign (−1)n−j

however, it differs from H by the permutation (1 . . . n − 2)j−1 with even parity as n − 2 is odd.
Now for n odd if j is even n − j is odd and vice versa. Thus the elements corresponding to H

have opposite signs and cancel.
As H was an arbitrary element of Zn we get that every summand has coefficient 0 and that Zn

vanishes.
Thus we have shown the result for both ∂C and ∂R. As ∂ = ∂C − ∂R it also follows that
∂Zn = 0.

Remark 3.4. The Morita graphs are also included in the python implementation in the appendix
and the above formula can be checked for small n. For n = 3 and n = 5 explicit isomorphism-
reduced representations of the Morita cycles Zn can be seen in Figure 9 and 10 respectively.
For larger n these calculations very quickly become difficult as the number of Morita graphs is
proportional to n!.

1

2

3

4

  2

1

2

3

4

− 4

Figure 9: Isomorphism reduced version of Z3

A more general result, showing that a similar sum vanishes for m polygons instead of just two,
has been shown by Conant and Vogtmann in [4].
As we have shown that the Morita cycles vanish under the boundary the question arises if they
are non-trivial in homology i.e. if they lie in the image of ∂ or not. Morita showed himself that
the first cycle (n = 3) is non-trivial and conjectured that all of his classes are non-trivial. Conant
and Vogtmann showed in [5] that the second cycle (n = 5) is also non-trivial. Gray extended
this to show in [8] that the third cycle (n = 7 ) is non-trivial. These calculations relied partly on
computer calculations whose runtime increases extremely quickly with n and are therefore not
practically viable for higher n. Thus Morita’s conjecture remains a challenging open problem to
this day.
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Figure 10: Isomorphism reduced version of Z5

18



References

[1] Dror Bar-Natan and Brendan McKay. “Graph Cohomology - An Overview and Some
Computations”. unpublished preprint. www.math.toronto.edu/drorbn/papers/GCOC/
GCOC.ps.

[2] Laurent Bartholdi. “The rational homology of the outer automorphism group of F7”. In:
New York Journal of Mathematics 22 (2016), pp. 191–197.

[3] James Conant, Allen Hatcher, Martin Kassabov, and Karen Vogtmann. “Assembling ho-
mology classes in automorphism groups of free groups”. In: Commentarii Mathematici
Helvetici 91.4 (2016), pp. 751–806.

[4] James Conant and Karen Vogtmann. “Morita classes in the homology of Aut(Fn) vanish
after one stabilization”. In: Groups, Geometry, and Dynamics 2.1 (2008), pp. 121–138.

[5] James Conant and Karen Vogtmann. “Morita classes in the homology of automorphism
groups of free groups”. In: Geometry & Topology 8.3 (2004), pp. 1471–1499.

[6] James Conant and Karen Vogtmann. “On a theorem of Kontsevich”. In: Algebraic &
Geometric Topology 3.2 (2003), pp. 1167–1224.

[7] Søren Galatius. “Stable homology of automorphism groups of free groups”. In: Annals of
mathematics (2011), pp. 705–768.

[8] Jonathan Nathan Gray. “On the homology of automorphism groups of free groups.” PhD
thesis. University of Tennessee, 2011.

[9] Frank Harary. Graph Theory. Reading Massachusetts: Addison-Wesley, 1969.
[10] Allen Hatcher. Algebraic Topology. Cambridge: Cambridge University Press, 2001.
[11] Allen Hatcher and Karen Vogtmann. “Homology stability for outer automorphism groups

of free groups”. In: Algebraic & Geometric Topology 4.2 (2004), pp. 1253–1272.
[12] Allen Hatcher and Karen Vogtmann. “Rational homology of Aut(Fn)”. In: Mathematical

Research Letters 5.6 (1998), pp. 759–780.
[13] Shigeyuki Morita, Takuya Sakasai, and Masaaki Suzuki. “Computations in formal sym-

plectic geometry and characteristic classes of moduli spaces”. In: Quantum Topology 6.1
(2015), pp. 139–182.

[14] Shigeyuki Morita, Takuya Sakasai, and Masaaki Suzuki. “Integral Euler characteristic of
Out(F11)”. In: Experimental Mathematics 24.1 (2015), pp. 93–97.

[15] Jakob Nielsen. “Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeu-
genden”. In: Mathematische Annalen 78.1 (1917), pp. 385–397.

[16] Ryo Ohashi. “The Rational Homology Group of Out(Fn) for n ≤ 6”. In: Experimental
Mathematics 17.2 (2008), pp. 167–179.

[17] Karen Vogtmann. “Automorphisms of Free Groups and Outer Space”. In: Geometriae
Dedicata 94.1 (2002), pp. 1–31.

[18] Karen Vogtmann. “The topology and geometry of automorphism groups of free groups”.
In: Proceedings of the 2016 European Congress of Mathematicians (2018), pp. 181–202.

[19] Karen Vogtmann and Marc Culler. “Moduli of graphs and automorphisms of free groups.”
In: Inventiones mathematicae 84 (1986), pp. 91–120.

19

www.math.toronto.edu/drorbn/papers/GCOC/GCOC.ps
www.math.toronto.edu/drorbn/papers/GCOC/GCOC.ps


A Python implementation

To run the ensuing code graphviz, a version of python 3 as well as the following packages are
needed:

• numpy
• sympy
• pydot
• networkx

The code consists of four files. In the boundaries.py file ∂C ,∂R, ∂ as well as the reduction
up to isomorphism and the vanishing of graphs with odd automorphisms is implemented. The
file plotting.py includes functions for plotting a single forested graph as well as a chain. In
MoritaCycles.py the generation of Morita graphs Mn(σ) as well as Morita cycles Zn and pro-
ducing positions for plotting is realized. Finally, in main.py a small working example reducing
Zn up to isomorphism and plotting it as well as calculating its boundary has been implemented.

A.1 main.py

from boundar ies import ∗
from MoritaCycles import ∗
from p l o t t i n g import ∗

n=3
path = "MCCycle " + str (n)
C = createAllMCOf (n)
C = r e s o l v e I s o s (C)
C = reso lveVan i sh ing (C)
pltChain (C, lambda x : createMCPos (n , c en t e r=x) , path , l ineWidth=3)

dC = de l t a (C)
print (dC)

A.2 boundaries.py

import numpy as np
import networkx as nx
from networkx . a lgor i thms import isomorphism as nx i so
from sympy . combinator i c s import Permutation

def ge tFore s t (G) :
o = nx . get_edge_attr ibutes (G, ’ order ’ )
return {key : va l for key , va l in o . i tems ( ) i f va l != −1}

def contractEdge (G, e ) :
H = G. copy ( )
H. remove_edges_from ( [ e ] )
return nx . contracted_nodes (H, e [ 0 ] , e [ 1 ] )
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edgeEqual i ty = nx . isomorphism . categor ical_mult iedge_match ( " f o r e s t " ,
Fa l se )

def deltaC (C) :
dC = [ ]
for k ,G in C:

F = getFore s t (G)
dG = [ ]
for e , i in F. items ( ) :

H = contractEdge (G, e )
FH = getFore s t (H)
for a , j in FH. items ( ) :

i f j > i :
H. edges [ a ] [ ’ o rder ’ ] = j − 1

dG. append ([( −1) ∗∗ i ∗ k , H] )
dC += dG

return dC

def deltaR (C) :
dC = [ ]
for k ,G in C:

F = getFore s t (G)
dG = [ ]
for e , i in F. items ( ) :

H = G. copy ( )
H. edges [ e ] [ ’ f o r e s t ’ ] = False
H. edges [ e ] [ ’ o rder ’ ] = −1
FH = getFore s t (H)
for a , j in FH. items ( ) :

i f j > i :
H. edges [ a ] [ ’ o rder ’ ] = j − 1

dG. append ([( −1) ∗∗ i ∗ k , H] )
dC += dG

return dC

def getForestPerm (F1 , F2 , g ) :
F1 = {(k [ 0 ] , k [ 1 ] ) : v for k , v in F1 . items ( ) }
F2 = {(k [ 0 ] , k [ 1 ] ) : v for k , v in F2 . items ( ) }
s i g = np . z e ro s ( len (F1) )
for e , i in F1 . items ( ) :

se = ( g [ e [ 0 ] ] , g [ e [ 1 ] ] )
i f se in F2 :

s i g [ i − 1 ] = F2 [ se ]
else :

s i g [ i − 1 ] = F2 [ ( se [ 1 ] , s e [ 0 ] ) ]
perm = Permutation ( s i g − 1 . 0 )
return (−1) ∗∗ perm . pa r i t y ( )
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def r e s o l v e I s o s (dG) :
i = 0
n = len (dG)
while i < n − 1 :

H1 = dG[ i ]
j = i + 1
while j < n :

H2 = dG[ j ]
GM = nxiso . GraphMatcher (H1 [ 1 ] , H2 [ 1 ] ,

edge_match=edgeEqual i ty )
i f GM. is_isomorphic ( ) :

sgn = getForestPerm ( ge tFore s t (H1 [ 1 ] ) ,
g e tFore s t (H2 [ 1 ] ) , GM. mapping )

H1 [ 0 ] += sgn ∗ H2 [ 0 ]
del dG[ j ]
n += −1

else :
j += 1

i += 1

# remove 0 s
r e s u l t = [G for G in dG i f G[ 0 ] != 0 ]
return r e s u l t

def r e so lveVan i sh ing (dG) :
def hasOddAuto (H) :

GM = nxiso . GraphMatcher (H, H, edge_match=edgeEqual i ty )
for g in GM. isomorphisms_iter ( ) :

F = getFore s t (H)
i f getForestPerm (F, F , g ) == −1:

return 1
return 0

r e s u l t = [G for G in dG i f not hasOddAuto (G[ 1 ] ) ]
return r e s u l t

def de l t a (G) :
dGC = deltaC (G)
dGR = deltaR (G)
dGC = r e s o l v e I s o s (dGC)
dGR = r e s o l v e I s o s (dGR)

dGR = np . array (dGR, dtype=object )
dGR[ : , 0 ] ∗= −1
dG = dGC + dGR. t o l i s t ( )
return r e so lveVan i sh ing (dG)
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A.3 plotting.py

import os
import networkx as nx
from boundar ies import ∗

def pltFG (H, pos , path = " out " ) :
G = H. copy ( )
f o r e s t = getFore s t (G)
nx . se t_edge_attr ibutes (G, { key : { " c o l o r " : " red " , " l a b e l " : va l }

for key , va l in f o r e s t . i tems ( ) })
for n , npos in pos . i tems ( ) :

i f (G. has_node (n) ) :
G. nodes [ n ] [ ’ pos ’ ] = ’"%d,%d" ’%(npos [ 0 ] , npos [ 1 ] )
G. nodes [ n ] [ ’ shape ’ ] = " po int "

p = nx . drawing . nx_pydot . to_pydot (G)
p . wr i t e ( path + " . dot " )
os . system ( " neato ␣−n2␣−Tpng␣ " + path + " . dot␣−o␣ " + path + " . png " )

def pltChain (C, posFunction , path=" out " , l ineWidth=5) :
masterG = nx . MultiGraph ( )
hPos = 0
for j , ( count ,H) in enumerate(C) :

i f j != 0 and j % lineWidth == 0 :
hPos −= 3.0

vPos = 6 ∗ ( j % lineWidth )
pos = posFunction ( ( vPos , hPos ) )
G = H. copy ( )
nx . se t_edge_attr ibutes (G, 2 . 0 , name=" penwidth " )
f o r e s t = getFore s t (G)
nx . se t_edge_attr ibutes (G, {key : { " c o l o r " : "#f f a 000 " ,

" penwidth " : 3 , " l a b e l " : va l } for key , va l in f o r e s t . i tems ( ) })

for node , nodePos in pos . i tems ( ) :
i f (G. has_node ( node ) ) :

G. nodes [ node ] [ ’ pos ’ ] = ’"%d,%d" ’ % ( nodePos [ 0 ] ,
nodePos [ 1 ] )

G. nodes [ node ] [ ’ shape ’ ] = " po int "
G. nodes [ node ] [ ’ width ’ ] = " 0 .15 pt "

masterG = nx . d i s j o in t_un ion (masterG ,G)
co f = str ( j ) + " co e f "
masterG . add_node ( co f )
i f j == 0 :

masterG . nodes [ c o f ] [ ’ l a b e l ’ ] = " ␣␣ " + str ( count )
e l i f count >= 0 :

masterG . nodes [ c o f ] [ ’ l a b e l ’ ] = "+␣ " + str ( count )
else :

masterG . nodes [ c o f ] [ ’ l a b e l ’ ] = " \u2212␣ " + str (abs ( count ) )
masterG . nodes [ c o f ] [ ’ shape ’ ] = " p l a i n t e x t "
masterG . nodes [ c o f ] [ ’ f o n t s i z e ’ ] = " 26pt "
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i f j % lineWidth == 0 :
masterG . nodes [ c o f ] [ ’ pos ’ ] = ’"%d,%d" ’ % (100 ∗ (−2.5 +

vPos ) , hPos ∗ 100)
else :

masterG . nodes [ c o f ] [ ’ pos ’ ] = ’"%d,%d" ’ % (100 ∗ (−3.0 +
vPos ) , hPos ∗ 100)

p = nx . drawing . nx_pydot . to_pydot (masterG )

p . wr i t e ( path + " . dot " )
os . system ( " neato ␣−n2␣−Tpdf␣ " + path + " . dot␣−o␣ " + path + " . pdf " )

A.4 MoritaCycles.py

import numpy as np
import networkx as nx
from i t e r t o o l s import permutat ions
from sympy . combinator i c s import Permutation

def createMC (n , i =0, j =0, perm = 0) :
H1 = nx . cycle_graph (np . arange (n) )
H2 = nx . cycle_graph (np . arange (n , 2 ∗ n) )
G = nx . MultiGraph (nx . compose (H1 , H2) )
i f perm == 0 :

G. add_edges_from (np . arange (2 ∗ n) . reshape ( ( 2 , −1) ) .T)
else :

G. add_edges_from (np . vstack ( ( np . arange (n) , perm) ) .T)
nx . se t_edge_attr ibutes (G, False , ’ f o r e s t ’ )
nx . se t_edge_attr ibutes (G, −1, ’ order ’ )

f o r e s t = np . hstack ( ( np . vstack ( ( np . vstack ( ( np . arange (n − 1) ,
np . arange (1 , n ) ) ) .T,

np . vstack ( ( np . arange (n , 2 ∗ n − 1) ,
np . arange (n + 1 , 2 ∗ n) ) ) .T) ) , np . z e r o s ( (2∗n−2 ,1) ) ) )

i f i != n−1:
f o r e s t [ i ] = [ 0 , n − 1 , 0 ]

i f j != n−1:
f o r e s t [ n−1 + j ] = [ n ,2∗n−1 ,0]

for i , e in enumerate( f o r e s t ) :
G. edges [ e ] [ ’ f o r e s t ’ ] = True
G. edges [ e ] [ ’ o rder ’ ] = i + 1

return G

def createAllMCOf (n) :
dG = [ ]
for perm in permutat ions (np . arange (n ,2∗n) ) :

G = createMC (n , n−1,n−1,perm)
perm = Permutation (np . array (perm)−n)
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dG += [ [ ( −1) ∗∗ perm . pa r i t y ( ) ,G] ]
return dG

def createMCPos (n , c en t e r =(0 ,0) ) :
s c a l e = 100 .0
lAng = np . l i n s p a c e (np . p i / 2 , −np . p i / 2 , n)
lPo in t s = s c a l e ∗np . vstack ( ( np . cos ( lAng ) − 2 .0 + cente r [ 0 ] ,

np . s i n ( lAng ) + cente r [ 1 ] ) ) .T
lPos = dict (enumerate( lPo in t s . t o l i s t ( ) , 0) )

rAng = np . l i n s p a c e (np . p i / 2 , 3 ∗ np . p i / 2 , n)
rPo int s = s c a l e ∗np . vstack ( ( np . cos ( rAng ) + 2 .0 + cente r [ 0 ] ,

np . s i n ( rAng ) + cente r [ 1 ] ) ) .T
rPos = dict (enumerate( rPo int s . t o l i s t ( ) , n ) )
return lPos | rPos

def rotateMCPos ( pos , r ) :
n = int ( len ( pos ) /2)
pos = np . array ( l i s t ( pos . va lue s ( ) ) )
lPos = np . r o l l ( pos [ : n ] , r , ax i s=0)
rPos = np . r o l l ( pos [ n : ] , r , ax i s=0)
return dict (enumerate( lPos . t o l i s t ( ) , 0) ) |

dict (enumerate( rPos . t o l i s t ( ) , n ) )
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