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Introduction

Singularity analysis is a great tool to obtain asymptotic
expansions of combinatorial classes.

Caveat: Only applicable if the generating function has a
non-zero, finite radius of convergence.

Topic of this talk: Power series with vanishing radius of
convergence and factorial growth.
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Consider the class of power series R[[x ]]αβ ⊂ R[[x ]] which
admit an asymptotic expansion of the form,

fn = αn+βΓ(n + β)

(
c0 +

c1

α(n + β)
+

c2

α2(n + β)(n + β − 1)
+ . . .

)
=

R−1∑
k=0

ckα
n+β−kΓ(n + β − k) +O

(
αn+β−RΓ(n + β − R)

)
R[[x ]]αβ a linear subspace of R[[x ]].

Includes power series with non-vanishing radius of
convergence: In this case all ck = 0.

These power series appear in

Graph counting
Permutations
Perturbation expansions in physics
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Consider a power series f (x) ∈ R[[x ]]αβ :

fn =
R−1∑
k=0

ckα
n+β−kΓ(n + β − k) +O

(
αn+β−RΓ(n + β − R)

)
Interpret the coefficients ck of the asymptotic expansion as a
new power series.

Definition

A maps a power series to its asymptotic expansion:

A : R[[x ]]αβ → R[[x ]]

f (x) 7→ γ(x) =
∞∑
k=0

ckx
k
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Theorem

A is a derivation on R[[x ]]αβ :

(Af · g)(x) = f (x)(Ag)(x) + (Af )(x)g(x)

⇒ R[[x ]]αβ is a subring of R[[x ]].

Proof sketch

With h(x) = f (x)g(x),

hn =
R−1∑
k=0

fn−kgk +
R−1∑
k=0

fkgn−k︸ ︷︷ ︸
High order times low order

+
n−R∑
k=R

fkgn−k︸ ︷︷ ︸
O(αnΓ(n+β−R))

. ∑n−R
k=R fkgn−k ∈ O(αnΓ(n + β − R)) follows from the

log-convexity of the Γ function.
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Example

Set F (x) =
∑∞

n=1 n!xn =
∑∞

n=1 1n+1Γ(n + 1)xn,

By definition: F ∈ R[[x ]]11 and (AF )(x) = 1

Because R[[x ]]11 is a ring: F (x)2 ∈ R[[x ]]11
Because of the product rule for A:

(AF (x)2)(x) = F (x)(AF )(x) + (AF )(x)F (x) = 2F (x)

Asymptotic expansion of F (x)2 is given by 2F (x):

[xn]F (x)2 =
R−1∑
k=0

ck(n − k)! +O ((n − R)!) ∀R ∈ N0

where ck = [xk ]2F (x).
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What happens for composition of power series ∈ R[[x ]]αβ?

Theorem Bender [1975]

If |fn| ≤ Cn then, for g ∈ R[[x ]]αβ with g0 = 0:

f ◦ g ∈ R[[x ]]αβ

(Af ◦ g)(x) = f ′(g(x))(Ag)(x).

Bender considered much more general power series, but this is
a direct corollary of his theorem in 1975.
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Example

A reducible permutation:

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

An irreducible permutation:

1
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A permutation π of [n] = {1, . . . , n} is called irreducible if
there is no m < n such that π([m]) = [m].

Set F (x) =
∑∞

n=1 n!xn - the OGF of all permutations.

The OGF of irreducible permutations I fulfills

I (x) = 1− 1

1 + F (x)
.
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I (x) = 1− 1

1 + F (x)
F (x) =

∞∑
n=1

n!xn.

By definition: F ∈ R[[x ]]11 and (AF )(x) = 1.
1

1+x is analytic at the origin, therefore by the chain rule

(AI )(x) =

(
A
(

1− 1

1 + F (x)

))
(x) =

1

(1 + F (x))2

Theorem Comtet [1972]

Therefore the asymptotic expansion of the coefficients of I (x) is

[xn]I (x) =
R−1∑
k=0

ck(n − k)! +O((n − R)!) ∀R ∈ N0,

where ck = [xk ] 1
(1+F (x))2 .
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This chain rule can easily be generalized to multivalued analytic
functions:

Theorem MB [2016]

More general: For f ∈ R{y1, . . . , yL} and g1, . . . , gL ∈ xR[[x ]]αβ :

(A(f (g1, . . . , gL))(x) =
L∑

l=1

∂f

∂g l
(g1, . . . , gL)(Aαβg l)(x).
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What happens if f is not an analytic function?

A fulfills a general ‘chain rule’:

Theorem MB [2016]

If f , g ∈ R[[x ]]αβ with g0 = 0 and g1 = 1, then f ◦ g ∈ R[[x ]]αβ and

(Af ◦ g)(x) = f ′(g(x))(Ag)(x) +

(
x

g(x)

)β
e

g(x)−x
αxg(x) (Af )(g(x))

⇒ R[[x ]]αβ is closed under composition and inversion.

⇒ We can solve for asymptotics of implicitly defined power series.
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Example: Simple permutations

A non-simple permutation:
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A simple permutation:
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A permutation π of [n] = {1, . . . , n} is called simple if there is
no (non-trivial) interval [i , j ] = {i , . . . , j} such that π([i , j ]) is
another interval.
The OGF S(x) of simple permutations fulfills

F (x)− F (x)2

1 + F (x)
= x + S(F (x)),

with F (x) =
∑∞

n=1 n!xn [Albert, Klazar, and Atkinson, 2003].
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F (x)− F (x)2

1 + F (x)
= x + S(F (x)).

By definition: F ∈ R[[x ]]11 and (AF )(x) = 1.

Extract asymptotics by applying the A-derivative:

A
(
F (x)− F (x)2

1 + F (x)

)
= A (x + S(F (x))) .

Apply chain rule on both sides

1− 2F (x)− F (x)2

(1 + F (x))2
(AF )(x) = S ′(F (x))(AF )(x)

+

(
x

F (x)

)1

e
F (x)−x
xF (x) (AS)(F (x)),

which can be solved for (AS)(x).
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After simplifications:

(AS)(x) =
1

1 + x

1− x − (1 + x)S(x)
x

1 + (1 + x)S(x)
x2

e
−

2+(1+x)
S(x)

x2

1−x−(1+x)
S(x)
x

We get the full asymptotic expansion for S :

[xn]S(x) =
R−1∑
k=0

ck(n − k)! +O((n − R)!) ∀R ∈ N0

where ck = [xk ](AS)(x).

[xn]S(x) = e−2n!

(
1− 4

n
+

2

n(n − 1)
− 40

3n(n − 1)(n − 2)
+ . . .

)
,

the first three coefficients have been obtained by Albert,
Klazar, and Atkinson [2003].
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Meta asymptotics

(AS)(x) =
1

1 + x

1− x − (1 + x)S(x)
x

1 + (1 + x)S(x)
x2

e
−

2+(1+x)
S(x)

x2

1−x−(1+x)
S(x)
x := g(x ,S(x))

g(x , S(x)) is an analytic function in S(x):

Because of the chain rule for analytic functions,

(A(AS))(x) =
∂g(x ,S)

∂S
(AS)(x),

we obtain the asymptotics of the asymptotic expansion.
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g(x ,S) =
1

1 + x

1− x − (1 + x)Sx
1 + (1 + x) S

x2

e
−

2+(1+x) S
x2

1−x−(1+x) Sx

This way we can obtain the GF for meta asymptotics:

f (t, x) =
∞∑
k=0

tk
(AkS)(x)

k!
= q−1(t + q(S(x))),

where q(S) =
∫ S

0
dS ′

g(x ,S ′) and q−1(q(S)) = S .

[tk ]f (t, x) is the GF of the k-th order asymptotics of S .

Using this information to resum such a series leads to the
theory of resurgence.
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Conclusions

R[[x ]]αβ forms a subring of R[[x ]] closed under
mutliplication, composition and inversion.

A is a derivation on R[[x ]]αβ which can be used to obtain
asymptotic expansions of implicitly defined power series.

Closure properties under asymptotic derivative A.
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