Generating asymptotics for factorially divergent sequences

Michael Borinsky ${ }^{1}$
Humboldt-University Berlin
Departments of Physics and Mathematics

ALEA in Europe, Vienna 2017

[^0]
Introduction

- Singularity analysis is a great tool to obtain asymptotic expansions of combinatorial classes.
■ Caveat: Only applicable if the generating function has a non-zero, finite radius of convergence.
■ Topic of this talk: Power series with vanishing radius of convergence and factorial growth.
- Consider the class of power series $\mathbb{R}[[x]]_{\beta}^{\alpha} \subset \mathbb{R}[[x]]$ which admit an asymptotic expansion of the form,

$$
\begin{aligned}
f_{n} & =\alpha^{n+\beta} \Gamma(n+\beta)\left(c_{0}+\frac{c_{1}}{\alpha(n+\beta)}+\frac{c_{2}}{\alpha^{2}(n+\beta)(n+\beta-1)}+\ldots\right) \\
& =\sum_{k=0}^{R-1} c_{k} \alpha^{n+\beta-k} \Gamma(n+\beta-k)+\mathcal{O}\left(\alpha^{n+\beta-R} \Gamma(n+\beta-R)\right)
\end{aligned}
$$

■ $\mathbb{R}[[x]]_{\beta}^{\alpha}$ a linear subspace of $\mathbb{R}[[x]]$.

- Includes power series with non-vanishing radius of convergence: In this case all $c_{k}=0$.
- These power series appear in
- Graph counting
- Permutations
- Perturbation expansions in physics
- Consider a power series $f(x) \in \mathbb{R}[[x]]_{\beta}^{\alpha}$:

$$
f_{n}=\sum_{k=0}^{R-1} c_{k} \alpha^{n+\beta-k} \Gamma(n+\beta-k)+\mathcal{O}\left(\alpha^{n+\beta-R} \Gamma(n+\beta-R)\right)
$$

■ Interpret the coefficients c_{k} of the asymptotic expansion as a new power series.

Definition

\mathcal{A} maps a power series to its asymptotic expansion:

$$
\begin{array}{llll}
\mathcal{A} \quad: & \mathbb{R}[[x]]_{\beta}^{\alpha} & & \mathbb{R}[[x]] \\
& f(x) & \mapsto & \gamma(x)=\sum_{k=0}^{\infty} c_{k} x^{k}
\end{array}
$$

Theorem

\mathcal{A} is a derivation on $\mathbb{R}[[x]]_{\beta}^{\alpha}$:

$$
(\mathcal{A} f \cdot g)(x)=f(x)(\mathcal{A} g)(x)+(\mathcal{A} f)(x) g(x)
$$

$\Rightarrow \mathbb{R}[[x]]_{\beta}^{\alpha}$ is a subring of $\mathbb{R}[[x]]$.

Proof sketch

With $h(x)=f(x) g(x)$,

$$
h_{n}=\underbrace{\sum_{k=0}^{R-1} f_{n-k} g_{k}+\sum_{k=0}^{R-1} f_{k} g_{n-k}}_{\text {High order times low order }}+\underbrace{\sum_{k=R}^{n-R} f_{k} g_{n-k}}_{\mathcal{O}\left(\alpha^{n} \Gamma(n+\beta-R)\right)}
$$

- $\sum_{k=R}^{n-R} f_{k} g_{n-k} \in \mathcal{O}\left(\alpha^{n} \Gamma(n+\beta-R)\right)$ follows from the log-convexity of the Γ function.

Example

- Set $F(x)=\sum_{n=1}^{\infty} n!x^{n}=\sum_{n=1}^{\infty} 1^{n+1} \Gamma(n+1) x^{n}$,
- By definition: $F \in \mathbb{R}[[x]]_{1}^{1}$ and $(\mathcal{A} F)(x)=1$
- Because $\mathbb{R}[[x]]_{1}^{1}$ is a ring: $F(x)^{2} \in \mathbb{R}[[x]]_{1}^{1}$
- Because of the product rule for \mathcal{A} :

$$
\left(\mathcal{A} F(x)^{2}\right)(x)=F(x)(\mathcal{A} F)(x)+(\mathcal{A} F)(x) F(x)=2 F(x)
$$

- Asymptotic expansion of $F(x)^{2}$ is given by $2 F(x)$:

$$
\left[x^{n}\right] F(x)^{2}=\sum_{k=0}^{R-1} c_{k}(n-k)!+\mathcal{O}((n-R)!) \quad \forall R \in \mathbb{N}_{0}
$$

where $c_{k}=\left[x^{k}\right] 2 F(x)$.

■ What happens for composition of power series $\in \mathbb{R}[[x]]_{\beta}^{\alpha}$?

- Theorem Bender [1975]

If $\left|f_{n}\right| \leq C^{n}$ then, for $g \in \mathbb{R}[[x]]_{\beta}^{\alpha}$ with $g_{0}=0$:

$$
\begin{gathered}
f \circ g \in \mathbb{R}[[x]]_{\beta}^{\alpha} \\
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)
\end{gathered}
$$

- Bender considered much more general power series, but this is a direct corollary of his theorem in 1975.

Example

A reducible permutation:

An irreducible permutation:

- A permutation π of $[n]=\{1, \ldots, n\}$ is called irreducible if there is no $m<n$ such that $\pi([m])=[m]$.
- Set $F(x)=\sum_{n=1}^{\infty} n!x^{n}$ - the OGF of all permutations.
- The OGF of irreducible permutations I fulfills

$$
I(x)=1-\frac{1}{1+F(x)}
$$

$$
I(x)=1-\frac{1}{1+F(x)} \quad F(x)=\sum_{n=1}^{\infty} n!x^{n}
$$

- By definition: $F \in \mathbb{R}[[x]]_{1}^{1}$ and $(\mathcal{A F})(x)=1$.
- $\frac{1}{1+x}$ is analytic at the origin, therefore by the chain rule

$$
(\mathcal{A} I)(x)=\left(\mathcal{A}\left(1-\frac{1}{1+F(x)}\right)\right)(x)=\frac{1}{(1+F(x))^{2}}
$$

Theorem Comtet [1972]

Therefore the asymptotic expansion of the coefficients of $I(x)$ is

$$
\left[x^{n}\right] l(x)=\sum_{k=0}^{R-1} c_{k}(n-k)!+\mathcal{O}((n-R)!) \quad \forall R \in \mathbb{N}_{0}
$$

where $c_{k}=\left[x^{k}\right] \frac{1}{(1+F(x))^{2}}$.

This chain rule can easily be generalized to multivalued analytic functions:

Theorem MB [2016]

More general: For $f \in \mathbb{R}\left\{y_{1}, \ldots, y_{L}\right\}$ and $g^{1}, \ldots, g^{L} \in x \mathbb{R}[[x]]_{\beta}^{\alpha}$:

$$
\left(\mathcal{A}\left(f\left(g^{1}, \ldots, g^{L}\right)\right)(x)=\sum_{l=1}^{L} \frac{\partial f}{\partial g^{\prime}}\left(g^{1}, \ldots, g^{L}\right)\left(\mathcal{A}_{\beta}^{\alpha} g^{\prime}\right)(x)\right.
$$

- What happens if f is not an analytic function?
- \mathcal{A} fulfills a general 'chain rule':

Theorem MB [2016]

If $f, g \in \mathbb{R}[[x]]_{\beta}^{\alpha}$ with $g_{0}=0$ and $g_{1}=1$, then $f \circ g \in \mathbb{R}[[x]]_{\beta}^{\alpha}$ and

$$
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)+\left(\frac{x}{g(x)}\right)^{\beta} e^{\frac{g(x)-x}{\alpha x g(x)}}(\mathcal{A} f)(g(x))
$$

$\Rightarrow \mathbb{R}[[x]]_{\beta}^{\alpha}$ is closed under composition and inversion.
\Rightarrow We can solve for asymptotics of implicitly defined power series.

Example: Simple permutations

A non-simple permutation:

A simple permutation:

- A permutation π of $[n]=\{1, \ldots, n\}$ is called simple if there is no (non-trivial) interval $[i, j]=\{i, \ldots, j\}$ such that $\pi([i, j])$ is another interval.
- The OGF $S(x)$ of simple permutations fulfills

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x))
$$

with $F(x)=\sum_{n=1}^{\infty} n!x^{n}$ [Albert, Klazar, and Atkinson, 2003].

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x))
$$

- By definition: $F \in \mathbb{R}[[x]]_{1}^{1}$ and $(\mathcal{A} F)(x)=1$.
- Extract asymptotics by applying the \mathcal{A}-derivative:

$$
\mathcal{A}\left(\frac{F(x)-F(x)^{2}}{1+F(x)}\right)=\mathcal{A}(x+S(F(x)))
$$

- Apply chain rule on both sides

$$
\begin{aligned}
\frac{1-2 F(x)-F(x)^{2}}{(1+F(x))^{2}}(\mathcal{A F})(x) & =S^{\prime}(F(x))(\mathcal{A} F)(x) \\
& +\left(\frac{x}{F(x)}\right)^{1} e^{\frac{F(x)-x}{x F(x)}}(\mathcal{A} S)(F(x))
\end{aligned}
$$

which can be solved for $(\mathcal{A S})(x)$.

- After simplifications:

$$
(\mathcal{A} S)(x)=\frac{1}{1+x} \frac{1-x-(1+x) \frac{S(x)}{x}}{1+(1+x) \frac{S(x)}{x^{2}}} e^{-\frac{2+(1+x) \frac{S(x)}{x^{2}}}{1-x-(1+x) \frac{S(x)}{x}}}
$$

- We get the full asymptotic expansion for S :

$$
\begin{aligned}
& \quad\left[x^{n}\right] S(x)=\sum_{k=0}^{R-1} c_{k}(n-k)!+\mathcal{O}((n-R)!) \quad \forall R \in \mathbb{N}_{0} \\
& \text { where } c_{k}=\left[x^{k}\right](\mathcal{A S})(x) \\
& {\left[x^{n}\right] S(x)=e^{-2} n!\left(1-\frac{4}{n}+\frac{2}{n(n-1)}-\frac{40}{3 n(n-1)(n-2)}+\ldots\right)}
\end{aligned}
$$

the first three coefficients have been obtained by Albert, Klazar, and Atkinson [2003].

Meta asymptotics

$$
(\mathcal{A S})(x)=\frac{1}{1+x} \frac{1-x-(1+x) \frac{S(x)}{x}}{1+(1+x) \frac{S(x)}{x^{2}}} e^{-\frac{2+(1+x) \frac{S(x)}{x^{2}}}{1-x-(1+x) \frac{S(x)}{x}}}:=g(x, S(x))
$$

- $g(x, S(x))$ is an analytic function in $S(x)$:
- Because of the chain rule for analytic functions,

$$
(\mathcal{A}(\mathcal{A} S))(x)=\frac{\partial g(x, S)}{\partial S}(\mathcal{A} S)(x)
$$

we obtain the asymptotics of the asymptotic expansion.

$$
g(x, S)=\frac{1}{1+x} \frac{1-x-(1+x) \frac{S}{x}}{1+(1+x) \frac{S}{x^{2}}} e^{-\frac{2+(1+x) \frac{S}{x^{2}}}{1-x-(1+x) \frac{S}{x}}}
$$

- This way we can obtain the GF for meta asymptotics:

$$
f(t, x)=\sum_{k=0}^{\infty} t^{k} \frac{\left(\mathcal{A}^{k} S\right)(x)}{k!}=q^{-1}(t+q(S(x)))
$$

where $q(S)=\int_{0}^{S} \frac{d S^{\prime}}{g\left(x, S^{\prime}\right)}$ and $q^{-1}(q(S))=S$.
■ [$\left.t^{k}\right] f(t, x)$ is the GF of the k-th order asymptotics of S.

- Using this information to resum such a series leads to the theory of resurgence.

Conclusions

■ $\mathbb{R}[[x]]_{\beta}^{\alpha}$ forms a subring of $\mathbb{R}[[x]]$ closed under mutliplication, composition and inversion.
■ \mathcal{A} is a derivation on $\mathbb{R}[[x]]_{\beta}^{\alpha}$ which can be used to obtain asymptotic expansions of implicitly defined power series.

- Closure properties under asymptotic derivative \mathcal{A}.

MH Albert, M Klazar, and MD Atkinson. The enumeration of simple permutations. 2003.
Edward A Bender. An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3):451-458, 1975.
Louis Comtet. Sur les coefficients de l'inverse de la série formelle $\sum n!t^{n}$. CR Acad. Sci. Paris, Ser. A, 275(1):972, 1972.
MB. Generating asymptotics for factorially divergent sequences. arXiv preprint arXiv:1603.01236, 2016.

[^0]: ${ }^{1}$ borinsky@physik.hu-berlin.de

