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Graphs and chord diagrams

What is a graph?

e Set of half-edges H
e A set partition of H into vertices V

e A fix point free involution ¢« : H — H, which pairs half-edges
to edges.

In other words,

Graph = (chord diagram) x (Set partition)
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Translation to generating functions

Graph = (chord diagram) x (Set partition)
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Straightforward generalization

Keep information on degree distribution
=
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Straightforward generalization

Keep information on degree distribution
=

keep information on signature of the (vertex) partition

‘Configuration model’ of graphs Bender, Canfield 1978:
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e Counting graphs
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e Critical phenomena

Topological invariants
e.g. Mg , Kontsevich 1994



Another generalization

Statistics on subgraphs:
Theorem (MB, Vogtmann 2019)
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(Pair of graph and subgraph) = (Bi-edge-colored graph)
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Natural to define a convolution product on functions ¢

G
=oxy Z |Aut G| |’
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where 1(G) = wlel,

Under mild conditions on the functions, they form a group
under this product.



(Possible) applications

WlEG/g‘

> > dle) Aut G

graphs G gCG

e Evaluation of topological invariants e.g. Out(F,)
MB, Vogtmann 2019

10



(Possible) applications

WlEG/g‘

> > dle) Aut G

graphs G gCG

e Evaluation of topological invariants e.g. Out(F,)
MB, Vogtmann 2019

e Constrained graph counting

10



(Possible) applications

WlEG/g‘

> > dle) Aut G

graphs G gCG

e Evaluation of topological invariants e.g. Out(F,)
MB, Vogtmann 2019

e Constrained graph counting

e Estimate the number of isomorphism classes of graphs
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T(Z,X) = Z T(g)X'Lg‘ZX(G),

cntd graphs with legs g
e where 7 is implicitly defined by,
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gCG

for all non-trivial graphs G and 7({)) = 1.
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> 2 T gy = X wem e ]exp( > ﬂg)x“g')

graphs G gCG m>0 cntd graphs with legs g

=1=) w”2m—DI[x*"]exp T(z,x),

m>0
e Can be ‘solved’ for T(z, x).
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