Constrained graph counting

Michael Borinsky, Nikhef - Amsterdam
December 9, Canadian Mathematical Society Winter Meeting 2019
on a part of a joint work with Karen Vogtmann

Constrained graph counting

- Count graphs with restrictions on edge-induced subgraphs.

$$
\sum_{\begin{array}{c}
\text { graphs } G \\
\text { such that } g \notin G \\
\text { for all } g \in \mathcal{P}
\end{array}} \frac{\lambda^{\left|V_{G}\right|} W^{\left|E_{G}\right|}}{\mid \text { Aut } G \mid}
$$

Constrained graph counting

- Count graphs with restrictions on edge-induced subgraphs.

$$
\sum_{\substack{\text { graphs } G \neq G \\ \text { such that g\&t } \\ \text { for all g GP }}} \frac{\lambda^{\left|V_{G}\right|} w^{\left|E_{G}\right|}}{\mid \text { Ant } G \mid} \underset{\text { frap ls }}{\text { labelled }}
$$

Example: $P=\{\Delta\} \rightarrow$ count trance free graphs

Constrained graph counting

- Count graphs with restrictions on edge-induced subgraphs.

$$
\sum_{\substack{\text { graphs } G \\ \text { such that } g \not \subset G \\ \text { for all } g \in \mathcal{P}}} \frac{\lambda^{\left|V_{G}\right|_{w^{\mid}} E_{G} \mid}}{\mid \text { Aut } G \mid}
$$

- More general: Evaluate 'statistics' on graphs:

$$
\sum_{\text {graphs } G} \frac{\lambda^{\left|V_{G}\right|} w^{\left|E_{G}\right|}}{\mid \text { Aut } G \mid} \sum_{g \subset G} \phi(g)
$$

where ϕ is a function from graphs to \mathbb{Q} or a power series ring.

Constrained graph counting

- Count graphs with restrictions on edge-induced subgraphs.

$$
\sum_{\substack{\text { graphs } G \\ \text { such that } g \not \subset G \\ \text { for all } g \in \mathcal{P}}} \frac{\lambda^{\left|V_{G}\right|_{w^{\mid}} E_{G} \mid}}{\mid \text { Ant } G \mid}
$$

- More general: Evaluate 'statistics' on graphs:

$$
\sum_{\text {graphs } G} \frac{\lambda^{\left|V_{G}\right|} w^{\left|E_{G}\right|}}{\mid \text { Put } G \mid} \sum_{g \subset G} \phi(g)
$$

where ϕ is a function from graphs to \mathbb{Q} or a power series ring.

Example: weight graphs by \# of triangles.

Graphs and chord diagrams

What is a graph?

- Set of half-edges H

Graphs and chord diagrams

What is a graph?

- Set of half-edges H
- A set partition of H into vertices V

Graphs and chord diagrams

What is a graph?

- Set of half-edges H
- A set partition of H into vertices V
- A fix point free involution $\iota: H \rightarrow H$, which pairs half-edges to edges.

Graphs and chord diagrams

What is a graph?

- Set of half-edges H
- A set partition of H into vertices V
- A fix point free involution $\iota: H \rightarrow H$, which pairs half-edges to edges.

In other words,

$$
\text { Graph }=(\text { chord diagram }) \times(\text { Set partition })
$$

Example

$$
\begin{gathered}
\text { Graph }=(\text { chord diagram }) \times(\text { Set partition }) \\
\sim \text { edges }
\end{gathered}
$$

Example

$$
\text { Graph }=(\text { chord diagram }) \times(\text { Set partition })
$$

Example

Translation to generating functions

$$
\begin{aligned}
& \text { Graph }=\text { (chord diagram }) \times \text { (Set partition) } \\
& \sum_{\text {graphs } G} \frac{w^{\left|E_{G}\right|} \lambda^{\left|V_{G}\right|}}{\mid \text { Hut } G \mid}=\sum_{m \geq 0} \frac{w^{m}(2 m-1)!!\left[x^{2 m}\right]}{7} \\
& \text { \# of chord diagrams }\left(\lambda\left(e^{x}-1\right)\right) \\
& \text { with } m \text { chords gen. fun. }
\end{aligned}
$$

Straightforward generalization

Keep information on degree distribution

$$
\Leftrightarrow
$$

keep information on signature of the (vertex) partition

Straightforward generalization

Keep information on degree distribution

$$
\Leftrightarrow
$$

keep information on signature of the (vertex) partition
'Configuration model' of graphs Bender, Canfield 1978:

$$
\begin{aligned}
\sum_{\text {graphs } G} \frac{w^{\left|E_{G}\right|} \prod_{v \in V_{G}} \lambda_{|v|}}{\mid \operatorname{AutG|}=} & \sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp \left(\frac{\left.\sum_{k \geq 0} \lambda_{k} \frac{x^{k}}{k!}\right)}{7}\right. \\
& \text { gen. fun of set partitions } \\
& \text { with specified part sizes. }
\end{aligned}
$$

Applications

- Counting graphs

Applications

- Counting graphs
- Random graphs Bender, Canfield 1978

Applications

- Counting graphs
- Random graphs Bender, Canfield 1978
- Critical phenomena

Applications

- Counting graphs
- Random graphs Bender, Canfield 1978
- Critical phenomena
- Topological invariants
e.g. $\mathcal{M}_{g, n}$ Kontsevich 1994

Another generalization

Statistics on subgraphs:
Theorem (MB, Vogtmann 2019)

$$
\begin{gathered}
\sum_{\text {graphs }} \sum_{g \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Aut } G \mid} \\
=\sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp \left(\sum_{\text {cntd graphs with legs } g} \phi(g) x^{\left|L_{g}\right|}\right)
\end{gathered}
$$

Another generalization

Statistics on subgraphs:
Theorem (MB, Vogtmann 2019)

$$
\begin{gathered}
\sum_{\text {graphs }} \sum_{G \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Aut } G \mid} \\
=\sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp \left(\sum_{\text {cntd graphs with legs g }} \phi(g) x^{|L g|} \uparrow_{i}\right.
\end{gathered}
$$

Another generalization

Statistics on subgraphs:
Theorem (MB, Vogtmann 2019)

$$
\begin{gathered}
\sum_{\text {graphs }} \sum_{g \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Put } G \mid} \\
=\sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp \left(\sum_{\text {cntd graphs with legs } g} \phi(g) x^{\left|L_{g}\right|}\right)
\end{gathered}
$$

leys $\hat{=}$ unmatched half-edses

Proof idea

$($ Pair of graph and subgraph $)=($ Bi-edge-colored graph $)$

Proof idea

$($ Pair of graph and subgraph $)=($ Bi-edge-colored graph $)$
$=($ Chord diagram $) \times($ Graph with legs $)$

Proof idea

(Pair of graph and subgraph $)=($ Bi-edge-colored graph $)$
$=($ Chord diagram $) \times($ Graph with legs $)$

$$
\sum_{\text {graphs }} \sum_{G \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Aut } G \mid}
$$

$$
\sum_{\text {graphs }} \sum_{g \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Aut } G \mid}
$$

Natural to define a convolution product on functions ϕ

$$
=\phi \star \psi\left(\sum_{\text {graphs } G} \frac{G}{\mid \text { Aut } G \mid}\right),
$$

where $\psi(G)=w^{\left|E_{G}\right|}$.

$$
\sum_{\text {graphs }} \sum_{g \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Aut } G \mid}
$$

Natural to define a convolution product on functions ϕ

$$
=\phi \star \psi\left(\sum_{\text {graphs } G} \frac{G}{\mid \text { Aut } G \mid}\right),
$$

where $\psi(G)=w^{\left|E_{G}\right|}$.
Under mild conditions on the functions, they form a group under this product.

(Possible) applications

$$
\sum_{\text {graphs }} \sum_{G \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Aut } G \mid}
$$

- Evaluation of topological invariants e.g. $\operatorname{Out}\left(F_{n}\right)$ MB, Vogtmann 2019

(Possible) applications

$$
\sum_{\text {graphs }} \sum_{G \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Aut } G \mid}
$$

- Evaluation of topological invariants e.g. $\operatorname{Out}\left(F_{n}\right)$ MB, Vogtmann 2019
- Constrained graph counting

(Possible) applications

$$
\sum_{\text {graphs }} \sum_{g \subset G} \phi(g) \frac{w^{\left|E_{G / g}\right|}}{\mid \text { Aut } G \mid}
$$

- Evaluation of topological invariants e.g. $\operatorname{Out}\left(F_{n}\right)$

MB, Vogtmann 2019

- Constrained graph counting
- Estimate the number of isomorphism classes of graphs

Example: $\chi\left(\right.$ Out $\left.\left(F_{n}\right)\right) \mathrm{MB}$, Vogtmann 2019

$$
T(z, x)=\sum_{\text {cntd graphs with legs } g} \tau(g) x^{\left|L_{g}\right|} z^{\chi(G)},
$$

Example: $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \mathrm{MB}$, Vogtmann 2019

$$
T(z, x)=\sum_{\text {cntd graphs with legs } g} \tau(g) x^{\left|L_{g}\right|_{z} \chi(G)},
$$

- where τ is implicitly defined by,

$$
0=\sum_{g \subset G} \tau(g)(-1)^{\left|E_{G / g}\right|}
$$

for all non-trivial graphs G and $\tau(\emptyset)=1$.

Example: $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \mathrm{MB}$, Vogtmann 2019

$$
T(z, x)=\sum_{\text {cntd graphs with legs } g} \tau(g) x^{\left|L_{g}\right|} z^{\chi(G)},
$$

- where τ is implicitly defined by,

$$
0=\sum_{g \subset G} \tau(g)(-1)^{\left|E_{G / g}\right|}
$$

for all non-trivial graphs G and $\tau(\emptyset)=1$.

$$
\sum_{\text {graphs }} \sum_{G \in G} \tau(g) \frac{w^{\mid E} E_{G / g} \mid}{\mid \text { Aut } G \mid}=\sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp \left(\sum_{\text {crtdd graphs with legs } g} \tau(g) x^{|L g|}\right)
$$

Example: $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \mathrm{MB}$, Vogtmann 2019

$$
T(z, x)=\sum_{\text {cntd graphs with legs } g} \tau(g) x^{\left|L_{g}\right|} z^{\chi(G)},
$$

- where τ is implicitly defined by,

$$
0=\sum_{g \subset G} \tau(g)(-1)^{\left|E_{G / g}\right|}
$$

for all non-trivial graphs G and $\tau(\emptyset)=1$.

$$
\begin{gathered}
\left.\sum_{\text {graphs }} \sum_{G \in G} \tau(g) \frac{w^{\left|E E_{G / g}\right|}}{\mid \text { Aut } G \mid}=\sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp \left(\sum_{\text {crntd graphs with legs }} \tau(g)\right)^{|L g|}\right) \\
\Rightarrow 1=\sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp T(z, x)
\end{gathered}
$$

Example: $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \mathrm{MB}$, Vogtmann 2019

$$
T(z, x)=\sum_{\text {cntd graphs with legs } g} \tau(g) x^{\left|L_{g}\right|_{z} \chi(G)},
$$

- where τ is implicitly defined by,

$$
0=\sum_{g \subset G} \tau(g)(-1)^{\left|E_{G / g}\right|}
$$

for all non-trivial graphs G and $\tau(\emptyset)=1$.

$$
\begin{gathered}
\left.\sum_{\text {graphs }} \sum_{g \in G} \tau(g) \frac{w^{\left|E E_{G / g}\right|}}{\mid \text { Aut } G \mid}=\sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp \left(\sum_{\text {contd graphs with legs } g} \tau(g)\right)^{|L g|}\right) \\
\Rightarrow 1=\sum_{m \geq 0} w^{m}(2 m-1)!!\left[x^{2 m}\right] \exp T(z, x)
\end{gathered}
$$

- Can be ‘solved' for $T(z, x)$.

