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Constrained graph counting

• Count graphs with restrictions on edge-induced subgraphs.

∑
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such that g !⊂G
for all g∈P

λ|VG |w |EG |

|AutG |
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Constrained graph counting

• Count graphs with restrictions on edge-induced subgraphs.

∑
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such that g !⊂G
for all g∈P

λ|VG |w |EG |

|AutG |

• More general: Evaluate ‘statistics’ on graphs:

∑

graphs G

λ|VG |w |EG |

|AutG |

∑

g⊂G

φ(g),

where φ is a function from graphs to Q or a power series ring.
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Constrained graph counting

• Count graphs with restrictions on edge-induced subgraphs.

∑

graphs G
such that g !⊂G
for all g∈P

λ|VG |w |EG |

|AutG |

• More general: Evaluate ‘statistics’ on graphs:

∑

graphs G

λ|VG |w |EG |

|AutG |

∑

g⊂G

φ(g),

where φ is a function from graphs to Q or a power series ring.

• Labelled graphs

1
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Graphs and chord diagrams

What is a graph?

• Set of half-edges H
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Graphs and chord diagrams

What is a graph?

• Set of half-edges H

• A set partition of H into vertices V

• A fix point free involution ι : H → H, which pairs half-edges

to edges.

In other words,

Graph = (chord diagram)× (Set partition)
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Example

Graph = (chord diagram)× (Set partition)
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Example

Graph = (chord diagram)× (Set partition)
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Example

Graph = (chord diagram)× (Set partition)
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Translation to generating functions

Graph = (chord diagram)× (Set partition)

∑

graphs G

w |EG |λ|VG |

|AutG |
=

∑

m≥0

wm(2m − 1)!![x2m] exp (λ(ex − 1))
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Straightforward generalization

Keep information on degree distribution

⇔

keep information on signature of the (vertex) partition
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Straightforward generalization

Keep information on degree distribution

⇔

keep information on signature of the (vertex) partition

‘Configuration model’ of graphs Bender, Canfield 1978:

∑

graphs G

w |EG |
∏

v∈VG
λ|v |

|AutG |
=

∑

m≥0

wm(2m − 1)!![x2m] exp





∑

k≥0

λk
xk

k!




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Applications

• Counting graphs
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Applications

• Counting graphs
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Applications

• Counting graphs

• Random graphs Bender, Canfield 1978

• Critical phenomena

• Topological invariants

e.g. Mg ,n Kontsevich 1994
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Another generalization

Statistics on subgraphs:

Theorem (MB, Vogtmann 2019)

∑

graphs G

∑

g⊂G

φ(g)
w |EG/g |

|AutG |

=
∑

m≥0

wm(2m − 1)!![x2m] exp





∑

cntd graphs with legs g

φ(g)x |Lg |




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Another generalization

Statistics on subgraphs:

Theorem (MB, Vogtmann 2019)

∑

graphs G

∑

g⊂G

φ(g)
w |EG/g |

|AutG |

=
∑

m≥0

wm(2m − 1)!![x2m] exp





∑

cntd graphs with legs g

φ(g)x |Lg |




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Proof idea

(Pair of graph and subgraph) = (Bi-edge-colored graph)
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Proof idea

(Pair of graph and subgraph) = (Bi-edge-colored graph)

= (Chord diagram)× (Graph with legs)

8



Proof idea

(Pair of graph and subgraph) = (Bi-edge-colored graph)

= (Chord diagram)× (Graph with legs)

8



∑

graphs G

∑

g⊂G

φ(g)
w |EG/g |

|AutG |
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∑

graphs G

∑

g⊂G

φ(g)
w |EG/g |

|AutG |

Natural to define a convolution product on functions φ

= φ $ ψ





∑

graphs G

G

|AutG |



 ,

where ψ(G ) = w |EG |.
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∑

graphs G

∑

g⊂G

φ(g)
w |EG/g |

|AutG |

Natural to define a convolution product on functions φ

= φ $ ψ





∑

graphs G

G

|AutG |



 ,

where ψ(G ) = w |EG |.

Under mild conditions on the functions, they form a group

under this product.
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(Possible) applications

∑

graphs G

∑

g⊂G

φ(g)
w |EG/g |

|AutG |

• Evaluation of topological invariants e.g. Out(Fn)

MB, Vogtmann 2019
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(Possible) applications

∑

graphs G

∑

g⊂G

φ(g)
w |EG/g |

|AutG |

• Evaluation of topological invariants e.g. Out(Fn)

MB, Vogtmann 2019

• Constrained graph counting

• Estimate the number of isomorphism classes of graphs
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Example: χ(Out(Fn)) MB, Vogtmann 2019

T (z , x) =
∑

cntd graphs with legs g

τ(g)x |Lg |zχ(G),
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• where τ is implicitly defined by,

0 =
∑
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Example: χ(Out(Fn)) MB, Vogtmann 2019

T (z , x) =
∑

cntd graphs with legs g

τ(g)x |Lg |zχ(G),

• where τ is implicitly defined by,

0 =
∑

g⊂G

τ(g)(−1)|EG/g |

for all non-trivial graphs G and τ(∅) = 1.

∑

graphs G

∑

g⊂G

τ(g)
w

|EG/g |

| Aut G |
=

∑

m≥0

w
m(2m − 1)!![x2m ] exp





∑

cntd graphs with legs g

τ(g)x|Lg |





⇒ 1 =
∑

m≥0

wm(2m − 1)!![x2m] expT (z , x),

• Can be ‘solved’ for T (z , x).
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