Michael Borinsky, Nikhef - Amsterdam

December 9, Canadian Mathematical Society Winter Meeting 2019

on a part of a joint work with Karen Vogtmann

• Count graphs with restrictions on edge-induced subgraphs.

• Count graphs with restrictions on edge-induced subgraphs.

Example: P= {]] -> count hangle free graphs

• Count graphs with restrictions on edge-induced subgraphs.

• More general: Evaluate 'statistics' on graphs:

$$\sum_{\text{graphs } G} \frac{\lambda^{|V_G|} |W^{|E_G|}}{|\operatorname{Aut} G|} \sum_{g \subset G} \phi(g),$$

where ϕ is a function from graphs to \mathbb{Q} or a power series ring.

• Count graphs with restrictions on edge-induced subgraphs.

• More general: Evaluate 'statistics' on graphs:

$$\sum_{\text{graphs } G} \frac{\lambda^{|V_G|} W^{|E_G|}}{|\operatorname{Aut} G|} \sum_{g \subset G} \phi(g),$$

where ϕ is a function from graphs to \mathbb{Q} or a power series ring.

1

• Set of half-edges H

- Set of *half-edges* H
- A set partition of H into vertices V

- Set of *half-edges* H
- A set partition of H into vertices V
- A fix point free involution *ι* : *H* → *H*, which pairs half-edges to edges.

- Set of *half-edges* H
- A set partition of H into vertices V
- A fix point free involution *ι* : *H* → *H*, which pairs half-edges to edges.

In other words,

 $Graph = (chord diagram) \times (Set partition)$

Example

$Graph = (chord diagram) \times (Set partition)$

3

Example

$Graph = (chord diagram) \times (Set partition)$

~ Vertices

Example

3

Translation to generating functions

$$Graph = (chord diagram) \times (Set partition)$$

$$\sum_{\text{graphs } G} \frac{w^{|E_G|}\lambda^{|V_G|}}{|\operatorname{Aut } G|} = \sum_{m \ge 0} \frac{w^m (2m-1)!! [x^{2m}] \exp\left(\lambda(e^x - 1)\right)}{1}$$

$$\texttt{# of crord diagrams } \qquad \texttt{gen. fun.}$$

$$\texttt{with un chords } \qquad \texttt{f set partitions}$$

Keep information on degree distribution

 \Leftrightarrow

keep information on signature of the (vertex) partition

Keep information on degree distribution

 \Leftrightarrow

keep information on signature of the (vertex) partition

'Configuration model' of graphs Bender, Canfield 1978:

$$\sum_{\text{graphs } G} \frac{w^{|E_G|} \prod_{v \in V_G} \lambda_{|v|}}{|\operatorname{Aut } G|} = \sum_{m \ge 0} w^m (2m-1)!! [x^{2m}] \exp\left(\sum_{k \ge 0} \lambda_k \frac{x^k}{k!}\right)$$

$$\overline{\mathcal{I}}$$

$$gen. fun \quad d \text{ set } partitions$$

$$\text{with specified } pavt \text{ sizes.}$$

5

• Counting graphs

- Counting graphs
- Random graphs Bender, Canfield 1978

- Counting graphs
- Random graphs Bender, Canfield 1978
- Critical phenomena

- Counting graphs
- Random graphs Bender, Canfield 1978
- Critical phenomena
- Topological invariants
 e.g. *M_{g,n}* Kontsevich 1994

Another generalization

Statistics on subgraphs:

Theorem (MB, Vogtmann 2019)

$$\sum_{\text{graphs } G} \sum_{g \in G} \phi(g) \frac{w^{|E_{G/g}|}}{|\operatorname{Aut } G|}$$
$$= \sum_{m \ge 0} w^m (2m-1)!! [x^{2m}] \exp\left(\sum_{\text{cntd graphs with legs } g} \phi(g) x^{|L_g|}\right)$$

Another generalization

Statistics on subgraphs:

Theorem (MB, Vogtmann 2019)

Statistics on subgraphs:

Theorem (MB, Vogtmann 2019)

(Pair of graph and subgraph) = (Bi-edge-colored graph)

(Pair of graph and subgraph) = (Bi-edge-colored graph) $= (Chord diagram) \times (Graph with legs)$

 $\begin{array}{l} (\mathsf{Pair of graph and subgraph}) = (\mathsf{Bi-edge-colored graph}) \\ = (\mathsf{Chord diagram}) \times (\mathsf{Graph with legs}) \end{array}$

$$\sum_{\text{graphs } G} \sum_{g \subset G} \phi(g) \frac{w^{|E_{G/g}|}}{|\operatorname{Aut} G|}$$

Natural to define a convolution product on functions ϕ

$$= \phi \star \psi \left(\sum_{\text{graphs } G} \frac{G}{|\operatorname{Aut} G|} \right),$$

where $\psi(G) = w^{|E_G|}$.

$$\sum_{\text{graphs } G} \sum_{g \subset G} \phi(g) \frac{w^{|E_{G/g}|}}{|\operatorname{Aut} G|}$$

Natural to define a convolution product on functions ϕ

$$= \phi \star \psi \left(\sum_{\text{graphs } G} \frac{G}{|\operatorname{Aut} G|} \right),$$

where $\psi(G) = w^{|E_G|}$.

Under mild conditions on the functions, they form a group under this product.

(Possible) applications

$$\sum_{\text{graphs}} \sum_{G | g \subset G} \phi(g) \frac{w^{|E_{G/g}|}}{|\operatorname{Aut} G|}$$

Evaluation of topological invariants e.g. Out(F_n)
 MB, Vogtmann 2019

8

(Possible) applications

$$\sum_{\text{graphs } G} \sum_{g \subset G} \phi(g) \frac{w^{|E_{G/g}|}}{|\operatorname{Aut} G|}$$

- Evaluation of topological invariants e.g. Out(F_n)
 MB, Vogtmann 2019
- Constrained graph counting

(Possible) applications

$$\sum_{\text{graphs}} \sum_{G | g \subset G} \phi(g) \frac{w^{|E_{G/g}|}}{|\operatorname{Aut} G|}$$

- Evaluation of topological invariants e.g. Out(F_n)
 MB, Vogtmann 2019
- Constrained graph counting
- Estimate the number of isomorphism classes of graphs

Example: $\chi(\operatorname{Out}(F_n))$ MB, Vogtmann 2019

 $T(z,x) = \sum \tau(g) x^{|L_g|} z^{\chi(G)},$

cntd graphs with legs g

Example: $\chi(Out(F_n))$ MB, Vogtmann 2019

$$T(z,x) = \sum \tau(g) x^{|L_g|} z^{\chi(G)},$$

cntd graphs with legs g

• where au is implicitly defined by,

$$0=\sum_{g\subset G} au(g)(-1)^{|\mathcal{E}_{G/g}|}$$

for all non-trivial graphs G and $\tau(\emptyset) = 1$.

Example: $\chi(\operatorname{Out}(F_n))$ MB, Vogtmann 2019

$$T(z,x) = \sum \tau(g) x^{|L_g|} z^{\chi(G)},$$

cntd graphs with legs g

• where au is implicitly defined by,

$$0=\sum_{g\subset G} au(g)(-1)^{|\mathcal{E}_{G/g}|}$$

for all non-trivial graphs G and $\tau(\emptyset) = 1$.

$$\sum_{\text{graphs } G} \sum_{g \subset G} \tau(g) \frac{w^{|\mathcal{E}_{G/g}|}}{|\operatorname{Aut } G|} = \sum_{m \ge 0} w^m (2m-1)!! [x^{2m}] \exp\left(\sum_{\text{cntd graphs with legs } g} \tau(g) x^{|\mathcal{L}_g|}\right)$$

Example: $\chi(\operatorname{Out}(F_n))$ MB, Vogtmann 2019

$$T(z,x) = \sum \tau(g) x^{|L_g|} z^{\chi(G)},$$

cntd graphs with legs g

• where au is implicitly defined by,

$$0=\sum_{g\subset G} au(g)(-1)^{|\mathcal{E}_{G/g}|}$$

for all non-trivial graphs G and $\tau(\emptyset) = 1$.

$$\sum_{\text{graphs } G} \sum_{g \subset G} \tau(g) \frac{w^{|\mathcal{E}_{G/g}|}}{|\operatorname{Aut } G|} = \sum_{m \ge 0} w^m (2m-1)!! [x^{2m}] \exp\left(\sum_{\text{cntd graphs with legs } g} \tau(g) x^{|\mathcal{L}_g|}\right)$$

$$\Rightarrow 1 = \sum_{m \ge 0} w^m (2m-1)!! [x^{2m}] \exp T(z,x),$$

Example: $\chi(Out(F_n))$ MB, Vogtmann 2019

$$T(z,x) = \sum \tau(g) x^{|L_g|} z^{\chi(G)},$$

cntd graphs with legs g

• where au is implicitly defined by,

$$0=\sum_{g\subset G} au(g)(-1)^{|\mathcal{E}_{G/g}|}$$

for all non-trivial graphs G and $\tau(\emptyset) = 1$.

$$\sum_{\text{graphs } G} \sum_{g \subset G} \tau(g) \frac{w^{|E_{G/g}|}}{|\operatorname{Aut } G|} = \sum_{m \ge 0} w^m (2m-1)!! [x^{2m}] \exp\left(\sum_{\text{cntd graphs with legs } g} \tau(g) x^{|L_g|}\right)$$

$$\Rightarrow 1 = \sum_{m \ge 0} w^m (2m-1)!! [x^{2m}] \exp T(z,x),$$

• Can be 'solved' for T(z, x).