Combinatorial quantum field theory classroom exercise session 1

Michael Borinsky

September 10, 2025

- 1. Prove the equivalence of the topological and the combinatorial graph definitions from the lecture.
- 2. (a) Find all half-edge/ $\{a, b, c, d\}$ -labeled representatives of the graph ∞ .
 - (b) Find generators of $\operatorname{Aut}(G)$ for half-edge labeled representatives of the graphs (\rightarrow) , (\rightarrow) , (\rightarrow) , (\rightarrow) .
 - (c) Compute the orders of the automorphism group of each of the above graphs.
- 3. (a) For any half-edge labeled graph, prove that $\sum_{v \in V_G} |v| = 2|E_G|$.
 - (b) The Euler characteristic $\chi(G) = |V_G| |E_G|$ is an (important) homotopy invariant of G. A graph is *admissible* if it has no vertices of degree 0, 1 or 2. Show that $\chi(G) < 0$ for all non-empty admissible graphs G.
 - (c) Show that the number of admissible graphs with fixed Euler characteristic is finite.
- 4. (a) Compute the bivariate generating function $\sum_{n,k>0} {n \choose k} x^k y^n$.
 - (b) Find a recursion equation for the sum $f_n = \sum_{k=0}^{\lceil n/2 \rceil} \binom{n-k}{k}$ defined for $n \ge 0$. (Use a)
- 5. (a) For a given H-labeled graph G = (V, E), define \mathbb{Q} -vector spaces $\mathbb{Q}H, \mathbb{Q}V, \mathbb{Q}E$ that are generated by the respective sets. Consider the linear map $\partial: \mathbb{Q}H \to \mathbb{Q}V \oplus \mathbb{Q}E, h \mapsto v_h e_h$ that maps a half-edge generator to the difference of the generators for the vertex and edge v_h, e_h to which h belongs.
 - Prove that dim ker $\partial = \#C(G) \chi(G)$, where #C(G) is the number of connected components of G.
 - (b) Let G = (V, E) be an H-labeled tree. For a given automorphism $\alpha \in \operatorname{Aut}(G)$, let α_V and α_E be the permutations that α induces on the sets V and E. Show that $\operatorname{sign}(\alpha) = \operatorname{sign}(\alpha_E) \operatorname{sign}(\alpha_V)$.