Combinatorial quantum field theory classroom exercise session 2

Michael Borinsky

- 1. (a) Prove directly (without the formula from the lecture) that the number of matchings (set partitions into blocks of size two) of a set of cardinality 2s is $(2s-1)!! = (2s-1)\cdot(2s-3)\cdots 3\cdot 1$.
 - (b) Prove that for all z > 0, (Hint: Use $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$),

$$\sqrt{\frac{z}{2\pi}} \int_{-\infty}^{\infty} x^{2n+1} e^{-z\frac{x^2}{2}} dx = 0.$$

and

$$\sqrt{\frac{z}{2\pi}} \int_{-\infty}^{\infty} x^{2n} e^{-z\frac{x^2}{2}} dx = z^{-n} (2n-1)!!$$

- 2. (a) Use the theorem from the lecture to derive a formula for the number of $\{1, \ldots, 2s\}$ labeled k-regular graphs. (All vertices have degree k.)
 - (b) Find one representative for each isomorphism class of 3-regular graphs with two vertices and for each isomorphism class of 4-regular graphs with two vertices.
 - (c) Compute the cardinality of the automorphism group of each graph from (b).
 - (d) Certify that you found all graphs in (b) using Theorem 6 and the result of (a).
- 3. (a) Let f(x) and g(x) be power series $f(x) = 1 + \sum_{n \geq 1} f_n x^n$, and $g(x) = \sum_{n \geq 1} g_n x^n$ in $\mathbb{Q}[[x]]$, related by $f(x) = \exp(g(x))$. Find a recursion equation that computes f_n when g_n is known and a recursion that computes g_n when f_n is known.
 - (b) Prove: If $g_n > 0$, then $f_n > 0$. And, if $f_n < 0$, then $g_n < 0$.
- 4. Let p_1, p_2, \ldots be an infinite set of variables. For a permutation $\alpha \in \operatorname{Sym}(H)$ with c_1^{α} 1-cycles, c_2^{α} 2-cycles, etc, we define the monomial $p^{\alpha} = \prod_{k \geq 0} p_k^{c_k^{\alpha}}$. For a given H-labeled graph G, the polynomial

$$C(G) = \frac{1}{|\operatorname{Aut}(G)|} \sum_{\alpha \in \operatorname{Aut}(G)} p^{\alpha},$$

is the *character* of the representation of Sym(G) associated with G. Historically, it is also known as the P'olya cycle-index polynomial.

- (a) Compute $C(\infty)$.
- (b) Prove that C(G) is an integer for all graph G and for all $k \ge 1$ we have $p_k = -1$.
- 5. (a) Compute the bivariate generating function $\sum_{n,k>0} {n \choose k} x^k y^n$.
 - (b) Find a recursion equation for the sum $f_n = \sum_{k=0}^{\lceil n/2 \rceil} \binom{n-k}{k}$ defined for $n \ge 0$. (Use a)