
Combinatorial quantum field theory
Solutions to assignment 1

Michael Borinsky

1. The Euler-Γ function generalizes the factorial function to non-integer values. We have n! = Γ(n + 1) for
all n ≥ 0. One way to define Γ is via the integral expression

Γ(z) =
∫ ∞

0
tze−t dt

t
for all z > 0.

(a) Bring the integral expression for Γ(z) above into a form amenable to Theorem 13. (Hint: Change the
integration variable to x via t = zex).
After the substitution, we get,

Γ(z) =
∫ ∞

−∞
zzezx−zex

dx = zze−z

∫ ∞

−∞
ez(1+x−ex)dx . (1)

Define g(x) = 1 + x − ex. The derivative of g equals, g′(x) = 1 − ex. We find that g′(0) = 0, g′(x) > 0
for all x < 0, and g′(x) < 0 for all x > 0. It follows that g is strictly increasing for x < 0, strictly
decreasing for x > 0, and that it has a maximum at x = 0. This maximum at x = 0 is hence the
unique global supremum. Further, g(x) is entire. In particular, we can locally expand it around x = 0
and we find that g′′(0) = −1.
We also need to prove that the integral on the right-hand side of (1) exists for large enough z. We
may know that Γ(z) is finite for all z > 0, so this existence follows.
Here is an argument that does not use this information:∫ ∞

−∞
ez(1+x−ex)dx =

∫ 0

−∞
ez(1+x−ex)dx +

∫ ∞

0
ez(1+x−ex)dx

Because 0 ≤ ex ≤ 1 for all x ≤ 0, we have∫ 0

−∞
ez(1+x−ex)dx ≤

∫ 0

−∞
ez(1+x)dx = 1

z
ez .

And because 1 + x − ex = −
∑

k≥2
xk

k! ≤ − x2

2 for all x ≥ 0, we have∫ ∞

0
ez(1+x−ex)dx ≤

∫ ∞

0
e−z x2

2 dx = 1
2

√
2π

z
.

So,
∫ ∞

−∞ ez(1+x−ex)dx is finite for all z > 0.
Hence, the requirements of Theorem 13 are fulfilled.

(b) Apply Theorem 13 to prove a sum-over-graphs formula for the coefficients ck of the following z → ∞
asymptotic expansion,

Γ(z)√
2π
z e−zzz

∼
∑
k≥0

ckz−k.
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This asymptotic expansion is essential in physics and in many mathematical fields; for instance, in
combinatorics due to the connection to the factorial.
We have

g(x) = 1 + x − ex = −
∑
k≥2

xk

k! = −x2

2 +
∑
k≥3

λk
xk

k! ,

where λk = −1 for all k ≥ 3. Hence, by Theorem 13 and Eq. (1),

Γ(z)√
2π
z e−zzz

=
√

z

2π

∫ ∞

−∞
ez(1+x−ex)dx ∼

∑
k≥0

ckz−k for large z, where (2)

ck =
∑

G∈Gu|deg≥3
χ(G)=−k

∏
v∈VG

λ|v|

| Aut(G)| =
∑

G∈Gu|deg≥3
χ(G)=−k

(−1)|VG|

| Aut(G)| .

(c) Compute the first two coefficients (i.e. c0 and c1) of the expansion using graphs.
We discussed the following in previous exercises, but it is good to recall it:
Because the graphs need to have vertex degree ≥ 3, the number of vertices cannot exceed 2|EG|/3.
Therefore, −χ(G) = |EG| − |VG| ≥ 1

3 |EG| = 1
3 (|VG| − χ(G)) ⇒ −χ(G) ≥ 1

2 |VG|. So, if χ(G) = 0, we
only need to consider graphs without edges and vertices. For χ(G) = −1, we need to sum all graphs
with up to 3 edges and two vertices.
The empty graph G = ∅ counts as a graph with Aut(∅) = 1, so c0 = 1.
For χ(G) = −1, we must sum over the graphs , and . We find that | Aut( )| =
| Aut( )| = 8 and | Aut( )| = 12. Hence c1 = − 1

8 + 1
8 + 1

12 = 1
12 . (We could add an argument here,

proving that these are all relevant graphs.)
(d) Use the following formula, the Stirling asymptotic expansion of Γ, to find a more compact expression

for the coefficients ck above. For all R ≥ 0,

log Γ(z) = (z − 1
2) log z − z + 1

2 log(2π) +
R−1∑
k=1

Bk+1

k(k + 1)z−k + O(z−R),

where Bk are the Bernoulli numbers.
Let βk = Bk+1

k(k+1) . We need to combine the formula above with Eq. (2) by matching the coefficients of
the asymptotic expansions order by order. After some manipulations, we get the identity

ck = [z−k] exp

∑
ℓ≥1

βℓz
−ℓ

 = [z−k]
∏
ℓ≥1

exp
(
βℓz

−ℓ
)

Because of the coefficient extraction operator, we can truncate the product for ℓ > k. Hence, with
exp(x) =

∑
ℓ≥0

xℓ

ℓ! , we get

ck = [z−k] exp
(
β1z−1)

· · · exp
(
βkz−k

)
=

∑
ℓ1,...,ℓk≥0∑k

m=1
mℓm=k

k∏
m=1

βℓm
m

ℓm! .

We could make the expression still a little bit more efficient by using the fact that βk vanishes for
even k ≥ 1.
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(e) Use graphs to compute the value of the second Bernoulli number B2.
Taking the log of a graph generating function passes from disconnected to connected graphs. So from
Theorem 13, we know that

log
(√

z

2π

∫ ∞

−∞
ez(1+x−ex)dx

)
∼

∑
k≥0

ccntd
k z−k,

where
ccntd

k =
∑

G∈Gu
cntd|deg≥3

χ(G)=−k

(−1)|VG|

| Aut(G)| .

We also know from the discussion above that

log
(√

z

2π

∫ ∞

−∞
ez(1+x−ex)dx

)
= log

 Γ(z)√
2π
z e−zzz

 ∼
∑
k≥1

βkz−k .

It follows that ccntd
k = βk. For k = 1, we find via the same set of graphs from exercise 1.c) that

ccntd
1 = c1 = 1

12 = B2

1 · 2 ⇒ B2 = 1
6 .

(f) The Bernoulli numbers Bk vanish if k is odd and larger than 1. Use this to prove a vanishing
statement for an alternating sum over connected graphs of fixed Euler characteristic.
It follows that βk vanishes for even k larger than 1. So, ccntd

k = 0 for all even k. (The empty graph
does not count as a connected graph, hence ccntd

0 = 0.) In graph sums, we have for all even k:

0 =
∑

G∈Gu
cntd|deg≥3

χ(G)=−k

(−1)|VG|

| Aut(G)| .

2. Let p1, p2, . . . be an infinite set of variables. For a permutation α ∈ Sym(H) with cα
1 1-cycles, cα

2 2-cycles,
etc, we define the monomial pα =

∏
k≥0 p

cα
k

k . For a given H-labeled graph G, the polynomial

C(G) = 1
| Aut(G)|

∑
α∈Aut(G)

pα,

is the character of the representation of Sym(H) associated with G. It is also known as the Pólya cycle-
index polynomial.

(a) Compute C( ) and C( ).

Aut( ) is a group of cardinality 8. We have two generators that flip each of the paddles (self-loops) on
either side. They will contribute a factor of 1

2 ( 1
2 (p2

1 +p2))2 = 1
8 p4

1 + 1
8 p2

2 + 1
4 p2

1p2 to the character. Here,
the term 1

2 p2
1 corresponds to fixing one paddle, and 1

2 p2 corresponds to flipping a paddle. Because
both generators commute, we can combine the characters by multiplication. Additionally, we have the
automorphisms that switch the two paddles. These contribute the term 1

4 (p2
2 + p4) to the character,

where the first term comes from switching the paddles such that the half-edges are permuted in two
two-cycles, and the second term comes from switching the paddles such that the half-edges permute
in one four-cycle. Hence,

C( ) = 1
8(p4

1 + 2p2
1p2 + 3p2

2 + 2p4).
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Analogously, we find

C( ) = 1
3! (

1
2p2

1(p2
1 + p2))3 + 1

2 · 1
2p2

1(p2
1 + p2) · 1

2p2
2(p2

2 + p4) + 1
3 · 1

2p2
3(p2

3 + p6),

where the first term covers all automorphisms where all non-selfloop edges are fixed, the second
term covers those automorphisms that fix exactly one non-selfloop edge, and the last term covers the
automorphisms that cyclically permute all non-selfloop edges. By expanding, we get

C( ) = 1
48

(
p12

1 + 3p10
1 p2 + 3p8

1p2
2 + p6

1p3
2 + 6p4

1p4
2 + 6p4

1p2
2p4 + 6p2

1p5
2 + 6p2

1p3
2p4 + 8p4

3 + 8p2
3p6

)
A cross-check is that C(G) = 1 if we set pk = 1.

(b) Observe that if pk = 1 for all k ≥ 1, then C(G) is 1. Prove that C(G) ∈ Z if pk = −1 for all k ≥ 1.
We need to show that

1
| Aut(G)|

∑
α∈Aut(G)

(−1)
∑

k
cα

k ∈ Z .

Recall that the sign of a permutation equals (−1) to the power of the number of even cycles of a
permutation. Our graphs have an even number of half-edges. So, α always has an even number of odd
cycles. Therefore, sign(α) = (−1)

∑
k

cα
k . If there is no automorphism β ∈ Aut(G) with sign(β) = −1,

then
1

| Aut(G)|
∑

α∈Aut(G)

sign(α) = 1 ∈ Z .

So it only remains to prove the statement if there is such a β ∈ Aut(G) for which sign(β) = −1,
which we will assume from now on. Consider the map sign : Aut(G) → {±1}, which is a surjective
group homomorphism. As such, we might know that the preimages sign−1(1) and sign−1(−1) have the
same cardinality by standard group theory. A more combinatorial way of seeing this is the following:
Fix some β ∈ Aut(G) with sign(β) = −1. The function f : α 7→ βα maps elements in sign−1(1) to
sign−1(−1). This function has the inverse f−1 : α 7→ β−1α, so we constructed a bijection between
sign−1(1) and sign−1(−1). Hence,∑

α∈Aut(G)

sign(α) = | sign−1(1)| − | sign−1(−1)| = 0 ∈ Z .

3. Let f(x) and g(x) be power series f(x) = 1 +
∑

n≥1 fnxn, and g(x) =
∑

n≥1 gnxn in Q[[x]], related by
f(x) = exp(g(x)).

(a) Prove a recursion that computes fn when gn is known. Also, prove a recursion that computes gn when
fn is known.
From f(x) = exp(g(x)) follows f ′(x) = exp(g(x)) ·g′(x) = f(x) ·g′(x). Expanding both sides as power
series gives, ∑

n≥1
nfnxn−1 =

∑
m,k≥0

fmkgkxm+k−1 ,

where we agree that f0 = 1. Therefore,

nfn =
n∑

k=1
kfn−kgk = ngn +

n−1∑
k=1

kfn−kgk

If all gn are known, then we can recursively compute fn via

fn = gn + 1
n

n−1∑
k=1

kfn−kgk for all n ≥ 1 . (3)
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If all fn are known, then we can recursively compute gn via

gn = fn − 1
n

n−1∑
k=1

kfn−kgk for all n ≥ 1 . (4)

(b) Prove: If gn > 0, then fn > 0. Also prove: If fn < 0, then gn < 0.
If gn > 0, fn > 0 follows recursively from eq. (3), because all terms on the right-hand side have a
positive sign.
If fn < 0, gn < 0 follows recursively from eq. (4), because in total all terms on the right-hand side
have a negative sign.

(c) Find a graph-based expression for the z → ∞ asymptotic expansion of

I(z) =
√

z

2π

∫ π
2

− π
2

exp
(

−z
sin2(x)

2

)
dx . (5)

Identities of sin and cos give − 1
2 sin2(x) = 1

4 (cos(2x) − 1) = 1
4

∑
k≥1(−1)k (2x)2k

(2k)! = − x2

2 +
∑

k≥3 λk
xk

k! ,
where λ2k = (−1)k4k−1 and λ2k+1 = 0. Elementary trigonometry also tells us that x = 0 is the
unique supremum of − 1

2 sin2(x) = 1
4 (cos(2x) − 1). The integral I(z) is finite for all z > 0, because

− sin2(x) ≤ 0 and

I(z) ≤
√

z

2π

∫ π
2

− π
2

exp (z · 0) dx =
√

zπ

2 .

Hence, we may apply Theorem 13 to get the sum-over-graphs formula for the large z asymptotic
expansion I(z) ∼

∑
k≥0 ckz−k,

ck =
∑

G∈Gu|deg≥4
χ(G)=−k

∏
v∈VG

λ|v|

| Aut(G)| ,

where λk is defined as above. We may also restrict the sum to only even graphs.
(d) Compute the asymptotic expansion combinatorially, neglecting all terms in O(z−2).

Recall 1.c). For k = 0, we only need the empty graph and c0 = 1. For k = 1, we only need to
compute the contribution of the graph, as the other relevant graphs have vertices of odd degree.
That graph has only a four-valent vertex and λ4 = 4. Therefore, c2 = 4

| Aut( )| = 1
2 . In total,

I(z) = 1 + 1
2 z−1 + O(z−2) for z → ∞.

(e) Prove a closed-form expression for the coefficients of this asymptotic expansion.
We make the integral substitution y = sin(x) in (5). Recall that sin2(x) + cos2(x) = 1 and therefore
cos(x) =

√
1 − sin2(x) for x ∈ [−π/2, π/2]. We have dy = cos(x)dx ⇒ dx = dy√

1−y2
. So, get from (5):

I(z) =
√

z

2π

∫ 1

−1
e−z y2

2
dy√

1 − y2
.

We know from Exercise 3.1 that∫ ∞

ε(z)
e−zy2/2dy ∈ O(z−R) for all R ≥ 0.

if ε(z) = z− 5
12 . Because 1/

√
1 − y2 ≤ 1 in the integration domain, it follows that for all R ≥ 0,

I(z) =
√

z

2π

∫ ε(z)

−ε(z)
e−z y2

2
dy√

1 − y2
+ O(z−R) .
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We may expand the algebraic part of the integrand via the generalized binomial theorem,

1√
1 − y2

=
M−1∑
k=0

(
− 1

2
k

)
(−y)2k + RM (y)

On the sufficiently small interval y ∈ [−ε(z), ε(z)], the remainder term is bounded by |RM (y)| ≤
Cε(z)2M , where C is some constant independent of z. We get

I(z) =
M−1∑
k=0

√
z

2π

∫ ε(z)

−ε(z)
e−z y2

2

(
− 1

2
k

)
(−y)2kdy + O(ε(z)M ) + O(z−R) .

We fix the expansion order M to be the smallest integer that is not smaller than 12
10 R. I.e. M = ⌈ 12

10 R⌉
and O(ε(z)M ) ⊂ O(z−R). Again, from Exercise 3.1, we know that extending the integration domains
of the Gaussian integral above to R only changes the expression by negligible O(z−R)-terms. So,

I(z) =
M−1∑
k=0

√
z

2π

∫ ∞

−∞
e−z y2

2

(
− 1

2
k

)
(−y)2kdy + O(z−R) .

=
M−1∑
k=0

z−k(−1)k(2k − 1)!!
(

− 1
2

k

)
+ O(z−R) .

Now, we can truncate the sum at R − 1 ≤ M − 1, as higher order terms are absorbed by the O(z−R).
The binomial can be rewritten as follows:(

− 1
2

k

)
=

(− 1
2 ) · (− 3

2 ) · · · (− 1
2 − k + 1)

1 · 2 · · · k
= (−2)−k (1) · (3) · · · (2k − 1)

1 · 2 · · · k

So,

ck = ((2k − 1)!!)2

2kk! = ((2k)!)2

23k(k!)3 .

In passing, we also proved a nontrivial positivity result. From the sum over graphs formula, it is not
clear that the ck are always positive; however, we have proved that ck > 0 for all k ≥ 0.

4. For a given H-labeled graph G = (V, E), define Q-vector spaces QH,QV,QE that are generated by the
respective sets. Consider the linear map ∂ : QH → QV ⊕QE, h 7→ vh − eh that maps a half-edge generator
to the difference of the generators for the vertex and edge vh, eh to which h belongs.

(a) Prove that dim ker ∂ = #C(G) − χ(G), where #C(G) is the number of connected components of G
and χ(G) = |VG| − |EG| is the Euler characteristic. (Hint: Give a combinatorial interpretation to the
cokernel of ∂.)
The cokernel of ∂ is the quotient vector space QV ⊕ QE/im(∂). An element of this quotient is an
equivalence class [a] ∈ {b ∈ QV ⊕ QE : b − a ∈ im(∂)}. So, one edge is in the same equivalence class
as a vertex if both are connected by a half-edge. The vertex, in turn, is again in the same equivalence
class as all edges that are incident to it, and so on. Hence, the equivalence classes in im(∂) correspond
to connected components of G.
Here is an alternative proof of the statement of the last paragraph: We claim that the dual quotient
space (QV ⊕ QE/im(∂))∗ is spanned by linear functions QV ⊕ QE → Q that are piece-wise constant
on connected components. Suppose there was some f : QV ⊕ QE → Q that is not constant on a
connected component. Therefore, there must be some half-edge h ∈ H such that f(v) ̸= f(e) for the
vertex v and the edge e that are connected by h. It follows that f(∂h) ̸= 0, which implies that f is
not a well-defined functional on (QV ⊕ QE/im(∂))∗.
The statement now follows from the formula dim ker ∂ − dim coker∂ = dimQH − dimQV ⊕ QE =
2|E| − |V | − |E| = −χ(G).
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(b) Let G = (V, E) be an H-labeled tree. For a given automorphism α ∈ Aut(G), let αV and αE be the
permutations that α induces on the sets V and E. Show that sign(α) = sign(αE) sign(αV ).
A tree has one connected component and Euler characteristic 1. We learn from the last statement that
dim ker ∂ = 0 and that therefore ∂ is injective. Further, we know that dimQH = dimQV ⊕ QE + 1,
because the cokernel of ∂ is one-dimensional.
We will look at two different bases for the vector space QV ⊕ QE and the matrix representations of
an automorphism α ∈ Aut(G) in these bases. The determinant is independent of the choice of basis,
so both matrix representations must have the same determinant. The first basis is the canonical one
v1, . . . , v|V |, e1, . . . , e|E|. The representative matrix αQV ⊕QE is a permutation matrix that does not
mix vertices and edges. Therefore, det αQV ⊕QE = sign αV sign αE .
Now, we represent the same automorphism in a different basis. The vectors ∂h1, . . . , ∂hn are all
linearly independent in QV ⊕QE because ∂ is injective. There are |H| = |E| + |V | − 1 of them, so we
miss one independent vector to make a basis. The vector c =

∑
e e+

∑
v v is linearly independent of all

vectors ∂hi, which follows from the same argument as the one in the last exercise. The automorphism
α permutes the vectors ∂hi, but leaves the vector c invariant. So, the associated matrix representation
βQV ⊕QE has determinant sign(α).
Alternatively we may use the short exact sequence 0 → QH

∂−→ QV ⊕ QE → Q → 0 to prove this
statement.
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