Combinatorial quantum field theory
Solutions to assignment 1

Michael Borinsky

1. The Euler-T' function generalizes the factorial function to non-integer values. We have n! = T'(n + 1) for
alln > 0. One way to define I' is via the integral expression

(a)

o dt
I'(z) = / tze*t? forall z>0.
0

Bring the integral expression for T'(z) above into a form amenable to Theorem 13. (Hint: Change the
integration variable to x via t = ze®).

After the substitution, we get,

I'(z) = / e g = zze_z/ eHe=eN gy (1)

Define g(z) = 1+ x — €®. The derivative of g equals, ¢’(x) = 1 —e®. We find that ¢’(0) =0, ¢’(z) > 0
for all z < 0, and ¢'(z) < 0 for all x > 0. It follows that g is strictly increasing for x < 0, strictly
decreasing for x > 0, and that it has a maximum at x = 0. This maximum at = 0 is hence the
unique global supremum. Further, g(z) is entire. In particular, we can locally expand it around = 0
and we find that ¢’ (0) = —1.

We also need to prove that the integral on the right-hand side of (1) exists for large enough z. We
may know that I'(z) is finite for all z > 0, so this existence follows.

Here is an argument that does not use this information:
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Because 0 < e* <1 for all x <0, we have

0 . 0 1
/ ez(l-l—w—e )dx < / ez(l—i—ac)dx — Ze7 .
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And because 1 +x — ¥ = — Ek:ZQ %T < —“"—22 for all z > 0, we have
oo o
/ ez(1+x—ew)dx < / e—z%dx _ 1 21 )
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So, [7_e*(1F==¢")dg is finite for all z > 0.
Hence, the requirements of Theorem 13 are fulfilled.

Apply Theorem 13 to prove a sum-over-graphs formula for the coefficients cy. of the following z — oo
asymptotic expansion,

\/;(Z) ~ Z cszk.
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This asymptotic expansion is essential in physics and in many mathematical fields; for instance, in
combinatorics due to the connection to the factorial.
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where A\, = —1 for all £ > 3. Hence, by Theorem 13 and Eq. (1),

z(1+a: e”) ~ —k
277 = [ — o / dz Z CLz for large z, where (2)
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Compute the first two coefficients (i.e. co and c1) of the expansion using graphs.
We discussed the following in previous exercises, but it is good to recall it:
Because the graphs need to have vertex degree > 3, the number of vertices cannot exceed 2|E¢g|/3.
Therefore, —x(G) = |Eg| — |Va| > 3|Ec| = 3([Va| — x(G)) = —x(G) > 3|Va|. So, if x(G) =0, we
only need to consider graphs without edges and vertices. For x(G) = —1, we need to sum all graphs
with up to 3 edges and two vertices.
The empty graph G = () counts as a graph with Aut(f) =1, so ¢y = 1.
For x(G) = —1, we must sum over the graphs ¢3,0-0 and GO. We find that | Aut(0-O)| =
| Aut(0O)| = 8 and | Aut(€3)| = 12. Hence ¢; = —% + £ + &5 = -5. (We could add an argument here,
proving that these are all relevant graphs.)

Use the following formula, the Stirling asymptotic expansion of I', to find a more compact expression
for the coefficients ¢y, above. For all R > 0,

R-1

1 ~Bry1 Lk R
log () = (= — ~)log 2 — =+ = log(2
0gl(2) = (2 = 5)logz — 2+ 5 log(27 +;§:1 Kkt 1) +0(z),

where By, are the Bernoulli numbers.

Let B = %. We need to combine the formula above with Eq. (2) by matching the coefficients of

the asymptotic expansions order by order. After some manipulations, we get the identity

cr = [z ¥ exp Zﬂngé =[] Hexp (Bez™)
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Because of the coefficient extraction operator, we can truncate the product for ¢ > k. Hence, with
'
exp(z) = > y50 75 We get

o= e (1) e () = Y 1R
|

We could make the expression still a little bit more efficient by using the fact that Sy vanishes for
even k > 1.



(e) Use graphs to compute the value of the second Bernoulli number Bs.
Taking the log of a graph generating function passes from disconnected to connected graphs. So from

Theorem 13, we know that
log ( /|~ / z(1+z—e” 1‘) ~ Zczntdsz,
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We also know from the discussion above that
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It follows that ¢{™d = ;.. For k = 1, we find via the same set of graphs from exercise 1.c) that
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(f) The Bernoulli numbers By vanish if k is odd and larger than 1. Use this to prove a vanishing

statement for an alternating sum over connected graphs of fixed Fuler characteristic.

It follows that By vanishes for even k larger than 1. So, ¢{™* = 0 for all even k. (The empty graph

does not count as a connected graph, hence ¢ = 0.) In graph sums, we have for all even k:

(_1)|VG\

0% e TAw@)]

Geggnt(l |deg23
x(G)=—Fk

2. Let p1,pa,... be an infinite set of variables. For a permutation o € Sym(H) with c¢§ 1-cycles, ¢§ 2-cycles,
ete, we define the monomial p® = szo pz’“. For a given H-labeled graph G, the polynomial
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C(G) =

is the character of the representation of Sym(H) associated with G. It is also known as the Pélya cycle-
index polynomial.

(a) Compute C(0O) and C’(go)

Aut(00) is a group of cardinality 8. We have two generators that ﬂip each of the paddles (self-loops) on
either side They will contribute a factor of 2 (3 (p?+ pz)) =3 ipi+ 3 1p3+ 1pips to the character. Here,
the term 2 3 1p? corresponds to fixing one paddle and 1 5p2 corresponds to flipping a paddle. Because
both generators commute, we can combine the characters by multiplication. Additionally, we have the
automorphisms that switch the two paddles. These contribute the term I(p3 + p4) to the character,
where the first term comes from switching the paddles such that the half-edges are permuted in two
two-cycles, and the second term comes from switching the paddles such that the half-edges permute
in one four-cycle. Hence,

1
~(pt + 2p3ps + 3p3 + 2pa).
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Analogously, we find

11 .11 1 11
C@O) = 5(517?(17? +p2))* + 5 5piPT 4 p2) - 5P3(P5 +pa) + 3 3P5(P5 + pe),

where the first term covers all automorphisms where all non-selfloop edges are fixed, the second
term covers those automorphisms that fix exactly one non-selfloop edge, and the last term covers the
automorphisms that cyclically permute all non-selfloop edges. By expanding, we get

1
c @*@ =5 (p1” + 3p1°p2 + 3p¥p3 + PSp3 + 6pips + 6p1psps + 6pIP3 + 6pTpapa + 85 + 8p3pe)

A cross-check is that C'(G) =1 if we set p, = 1.
(b) Observe that if pr = 1 for all k > 1, then C(G) is 1. Prove that C(G) € Z if pp = —1 for all k > 1.
We need to show that
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Recall that the sign of a permutation equals (—1) to the power of the number of even cycles of a
permutation. Our graphs have an even number of half-edges. So, o always has an even number of odd

cycles. Therefore, sign(a) = (—1)Zk ¢k . If there is no automorphism 3 € Aut(G) with sign(8) = —1,

then .
—_ i =1€Z.
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So it only remains to prove the statement if there is such a 8 € Aut(G) for which sign(8) = —1,

which we will assume from now on. Consider the map sign : Aut(G) — {£1}, which is a surjective
group homomorphism. As such, we might know that the preimages sign=*(1) and sign~!(—1) have the
same cardinality by standard group theory. A more combinatorial way of seeing this is the following;:
Fix some 3 € Aut(G) with sign(8) = —1. The function f : a — Sa maps elements in sign='(1) to
sign~!(—1). This function has the inverse f~1 : a +— B~ la, so we constructed a bijection between
sign™!(1) and sign~!(—1). Hence,

> sign(a) = [sign (1) — |sign ™' (~1)| =0 € Z.
acAut(G)
3. Let f(z) and g(x) be power series f(x) =1+ o faz™, and g(x) = >_, 5, gn2™ in Q[[z]], related by
f(z) = exp(g(z)).
(a) Prove a recursion that computes f, when g, is known. Also, prove a recursion that computes g, when

fn is known.
From f(z) = exp(g(z)) follows f'(z) = exp(g(z))-¢'(x) = f(x)-¢'(z). Expanding both sides as power

series gives,
n—1 __ m—+k—1
E nfne = § Jmkgrx )
n>1 m,k>0

where we agree that fo = 1. Therefore,

n n—1
nfn = kfn ke =ngn+ Y kfo kgr

k=1 k=1
If all g,, are known, then we can recursively compute f, via

n—1

1
= gn+ — kfn— fi In>1. 3
f g+n;f kgr for all n (3)



If all f,, are known, then we can recursively compute g, via

n—1

1
n = fn— — kfn—rgr foralln>1. 4

gn=Tn—~ kZ:l fokg (4)
Prove: If g, > 0, then f, > 0. Also prove: If f, <0, then g, < 0.
If g, > 0, f, > 0 follows recursively from eq. (3), because all terms on the right-hand side have a
positive sign.
If f, <0, g, <0 follows recursively from eq. (4), because in total all terms on the right-hand side
have a negative sign.

Find a graph-based expression for the z — oo asymptotic expansion of

1(2) = \/Z [ exp <zsm22(x) > d . (5)

Identities of sin and cos give —3 sin®(z) = (cos(2z) — 1) = iZkZl(—l)k (?;,zj,k = —%2 +2 k>3 )\k%,

where Aoy, = (—1)’“4’“‘1 and Agg4+1 = 0. Elementary trigonometry also tells us that x = 0 is the

unique supremum of —3 sin?(x) = §(cos(2x) — 1). The integral I(z) is finite for all z > 0, because

—sin?(z) < 0 and
I(z) < ,/;T/;exp(zﬂ)do: %r

Hence, we may apply Theorem 13 to get the sum-over-graphs formula for the large z asymptotic
expansion I(z) ~ >, oo crzF,
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where Ay is defined as above. We may also restrict the sum to only even graphs.

Compute the asymptotic expansion combinatorially, neglecting all terms in O(z=2).

Recall 1.c). For k = 0, we only need the empty graph and ¢p = 1. For k = 1, we only need to
compute the contribution of the GO graph, as the other relevant graphs have vertices of odd degree.
That graph has only a four-valent vertex and \y = 4. Therefore, c; = W“O@I = 1. In total,

5-
I(z) =1+ 1271+ 0O(272) for 2 — .
Prove a closed-form expression for the coefficients of this asymptotic expansion.

We make the integral substitution y = sin(x) in (5). Recall that sin?(x) + cos?(z) = 1 and therefore
cos(x) = /1 — sin*(x) for € [-n/2,7/2]. We have dy = cos(z)dz = dz = —2 So, get from (5):

Vi-y?'
1
z 2 dy
I(z) =4/ — e ——.
() 27T/,1 V31—

/ e*ZyQ/Zdy € O(z™ ) for all R > 0.
e(2)

We know from Exercise 3.1 that

ife(z) = 2~ 12. Because 1/4/1 —y? <1 in the integration domain, it follows that for all R > 0,

z [ 2 dy
I(2) =4/ — e F T ——— 4+ 0>z ).
(=) ‘/%/5@ s+ OG



We may expand the algebraic part of the integrand via the generalized binomial theorem,

M-1 1
11—y2 = Z <k,2)(y)2k +Rum(y)
k=0

On the sufficiently small interval y € [—e(2),e(2)], the remainder term is bounded by |Ras(y)| <
Ce(2)?M | where C' is some constant independent of z. We get

I(z) = Mi \/Z [ E::) e <,f) (=) dy + O(e(2)M) + 0z~ 7).

k=0

We fix the expansion order M to be the smallest integer that is not smaller than %R. Ie. M = f% R]
and O(e(2)M) € O(z~ ). Again, from Exercise 3.1, we know that extending the integration domains
of the Gaussian integral above to R only changes the expression by negligible O(z~f)-terms. So,

Iz) = A:Z_: \/Z /_ : et (_,f) (—y)*"dy +O(="").

M-1 1
=) =Rk - 1)!!(‘;) + 01,

k=0

Now, we can truncate the sum at R —1 < M — 1, as higher order terms are absorbed by the O(z~%).
The binomial can be rewritten as follows:

(4= ke 0@
k 1-2...k 1-2---k

So,
((2k — 1)) _ ((2k)!)?
2k k! o 23k(EN3 T
In passing, we also proved a nontrivial positivity result. From the sum over graphs formula, it is not
clear that the ¢; are always positive; however, we have proved that ¢ > 0 for all k£ > 0.
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4. For a given H-labeled graph G = (V, E), define Q-vector spaces QH,QV,QFE that are generated by the
respective sets. Consider the linear map 0 : QH — QV & QF, h — vy, — ey, that maps a half-edge generator
to the difference of the generators for the vertex and edge vy, e to which h belongs.

(a)

Prove that dimker 0 = #C(G) — x(G), where #C(G) is the number of connected components of G
and x(G) = |Va| — |E¢| is the Euler characteristic. (Hint: Give a combinatorial interpretation to the
cokernel of 0.)

The cokernel of 0 is the quotient vector space QV & QE/im(9). An element of this quotient is an
equivalence class [a] € {b € QV @& QFE : b —a € im(9)}. So, one edge is in the same equivalence class
as a vertex if both are connected by a half-edge. The vertex, in turn, is again in the same equivalence
class as all edges that are incident to it, and so on. Hence, the equivalence classes in im(9) correspond
to connected components of G.

Here is an alternative proof of the statement of the last paragraph: We claim that the dual quotient
space (QV @ QE/im(0))* is spanned by linear functions QV @ QE — Q that are piece-wise constant
on connected components. Suppose there was some f : QV & QF — Q that is not constant on a
connected component. Therefore, there must be some half-edge h € H such that f(v) # f(e) for the
vertex v and the edge e that are connected by h. It follows that f(Oh) # 0, which implies that f is
not a well-defined functional on (QV @ QF /im(9))*.

The statement now follows from the formula dimker 0 — dim cokerd = dim QH — dimQV & QF =
20E| - [V| - |E| = —x(G).



(b)

Let G = (V, E) be an H-labeled tree. For a given automorphism « € Aut(G), let ay and ag be the
permutations that a induces on the sets V and E. Show that sign(a) = sign(ag) sign(ay).
A tree has one connected component and Euler characteristic 1. We learn from the last statement that
dimker 9 = 0 and that therefore 0 is injective. Further, we know that dim QH = dimQV @ QF + 1,
because the cokernel of d is one-dimensional.
We will look at two different bases for the vector space QV @ QF and the matrix representations of
an automorphism « € Aut(G) in these bases. The determinant is independent of the choice of basis,
so both matrix representations must have the same determinant. The first basis is the canonical one
Vi,..., Uy, €1,-..,€/g. The representative matrix agyveqr is a permutation matrix that does not
mix vertices and edges. Therefore, det agyagr = sign ay sign ag.

Now, we represent the same automorphism in a different basis. The vectors dhq,...,0h, are all
linearly independent in QV & QF because 0 is injective. There are |H| = |E|+ |V|—1 of them, so we
miss one independent vector to make a basis. The vector ¢ =)"_e+> v is linearly independent of all
vectors Oh;, which follows from the same argument as the one in the last exercise. The automorphism
« permutes the vectors Oh;, but leaves the vector ¢ invariant. So, the associated matrix representation
Boveor has determinant sign(a).

Alternatively we may use the short exact sequence 0 — QH 9, QV & QF — Q — 0 to prove this
statement.



