Bounds and estimates for Feynman-perturbative expansions

Michael Borinsky ${ }^{1}$

Humboldt-University Berlin
Departments of Physics and Mathematics
ISSP - Erice, June 2017

Renormalized asymptotic enumeration of Feynman diagrams arXiv:1703.00840 (to appear in Annals of Physics)

[^0]
Physical motivation

- Often, the perturbation expansions turn out to have vanishing radius of convergence!
■ Dyson's argument: Let

$$
\begin{equation*}
F(\alpha)=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots \tag{1}
\end{equation*}
$$

be a physical quantity in QED which is calculated as a formal power series in α.

- If F is analytic at $\alpha=0$ we can analytically continue to negative α, resulting in a QFT where equal charges attract.
- The fictitious QFT will have no stable ground state. \Rightarrow contradiction $\Rightarrow F(\alpha)$ cannot be analytic at $\alpha=0$.

First step: Number of diagrams

- The divergence of the perturbative expansion is believed to be caused by the proliferation of Feynman diagrams.
■ Feynman diagrams can be counted rather easily using zero-dimensional field theory.
- The integral

$$
Z(\hbar)=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+F(x)\right)}
$$

is to be interpreted as a formal power series Cvitanović et al. [1978], Argyres et al. [2001], Hurst [1952], Molinari and Manini [2006] .

- Possible 'interactions' are encoded in $F(x)$.

Example

$$
Z^{\text {stir }}(\hbar):=\frac{\Gamma\left(\frac{1}{\hbar}\right)}{\sqrt{2 \pi \hbar}\left(\frac{1}{\hbar}\right)^{\frac{1}{\hbar}} e^{-\frac{1}{\hbar}}}=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}-\left(e^{x}-1-x-\frac{x^{2}}{2}\right)\right)}
$$

■ Combinatorial integral representation of Stirling's famous (asymptotic) expansion of the Gamma-function.
■ Counts the (orbifold) Euler characteristic of the moduli space of (stable) open curves Kontsevich [1992],

$$
\log Z^{\text {stir }}(\hbar)=\sum_{\substack{g, n \\ n+2 g-2 \geq 0}} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} \hbar^{n+2 g-2}
$$

Example

$$
Z^{s t i r}(\hbar):=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}-\left(e^{x}-1-x-\frac{x^{2}}{2}\right)\right)}
$$

- Set $F(x)=-\left(e^{x}-1-x-\frac{x^{2}}{2}\right)$. Combinatorial: All vertices are allowed and $\lambda_{k}=-1$.
- Diagrammatically:

$$
\begin{aligned}
Z^{\text {stir }}(\hbar) & =1+\frac{1}{8} \bigcirc 0+\frac{1}{12} \bigcirc+\frac{1}{8} \bigcirc \bigcirc+\ldots \\
& =1+\hbar \underbrace{\left(\frac{1}{8}(-1)^{2}+\frac{1}{12}(-1)^{2}+\frac{1}{8}(-1)\right)}_{=\frac{1}{12}}+\ldots \\
& =1+\hbar \frac{1}{12}+\hbar^{2} \frac{1}{288}-\hbar^{3} \frac{139}{51840}-\hbar^{4} \frac{571}{2488320}+\ldots
\end{aligned}
$$

Computation

■ Defines a map $\mathcal{F}: x^{3} \mathbb{R}[[x]] \rightarrow \mathbb{R}[[\hbar]]$.

- Suitable for studying random graphs Erdös and Rényi [1959].
- Efficient calculation is possible using an interpretation as a hyperelliptic curve.

Interpretation as hyperelliptic curve

$$
Z(\hbar)=\sum_{n=0}^{\infty}(2 n-1)!!\left[y^{2 n}\right] G^{\prime}(y)
$$

where $G(y)$ is the (positive) solution of $\frac{y^{2}}{2}=\frac{G(y)^{2}}{2}-F(G(y))$.

- The implicit equation $\frac{y^{2}}{2}=\frac{G(y)^{2}}{2}-F(G(y))$ defines a complex curve in \mathbb{C}^{2}.
- The asymptotics of $Z(\hbar)$ are governed by the asymptotics of the convergent power series $G(y)$.
- Similar structures to topological recursion Eynard and Orantin [2007].

Figure: Plot of the elliptic curve $\frac{y^{2}}{2}=\frac{x^{2}}{2}-\frac{x^{3}}{3!}$, which can be associated to the perturbative expansion of zero-dimensional φ^{3}-theory. The dominant singularity can be found at $(x, y)=\left(2, \frac{2}{\sqrt{3}}\right)$.

- Renormalization can be used to restrict the number of diagrams.
■ Using BPHZ renormalization, the number of skeleton diagrams is obtained.
- More sophisticated techniques can be used to restrict to more general classes of diagrams \Rightarrow Hopf algebra of Feynman diagrams Connes and Kreimer [1999].
■ Answers question by Freeman Dyson: Number of skeleton diagrams in quenched QED is

$$
\begin{gathered}
e^{-2}(2 n-1)!!\left(1-\frac{6}{2 n+1}\right. \\
\left.-\frac{4}{(2 n-1)(2 n+1)}-\frac{218}{3} \frac{1}{(2 n-3)(2 n-1)(2 n+1)}+\ldots\right)
\end{gathered}
$$

- Hopf algebra techniques can be used to evaluate random graph models.

Bounds

- There are many ways to impose bounds on the value of Feynman integrals Bender and Wu [1969].
■ Interesting algebraic structure: The 'Hepp-bound'.
- Renormalization group invariant part of the amplitude is bounded Panzer [2016]:

$$
\mathcal{P}(\Gamma)=\int \frac{d \Omega}{\psi^{\frac{D}{2}}} \leq \sum_{\emptyset \subset \gamma_{1} \subset \cdots \subset \gamma_{n-1} \subset \Gamma} \frac{1}{\omega_{D}\left(\gamma_{1}\right) \cdots \omega_{D}\left(\gamma_{n}\right)}
$$

- Sum over all flags, maximal chains of 1 PI subdiagrams of Γ.
- ω_{D} assigns the superficial degree of divergence to the subgraph γ_{i}.
- These bounds can be summed over all diagrams.
- The generating function for the sum fulfills a non-linear ODE for instance in ϕ^{4} MB [2017]:

$$
\begin{aligned}
\left(\frac{1}{2} x \partial_{x}-1\right) F(x) & =\frac{1}{2} \hbar\left(\partial_{x}^{2} \log \frac{1}{1-F(x)}\right. \\
& \left.-\left[\left(1+\frac{x^{2}}{2} \partial_{\xi}^{2}\right) \partial_{\xi}^{2} \log \frac{1}{1-F(\xi)}\right]_{\xi=0}\right)
\end{aligned}
$$

- Also carries interesting Hopf-algebraic structures.
- Related to combinatorial constructions on graphs: Ear decompositions and Fulkerson conjecture.

Summary

- Renormalization together with the divergence of the perturbation expansion shows very interesting mathematical structures.
■ Hopf algebra techniques enable us to extend the notion of renormalization to evaluate restricted random graph models.
- Similar structures can be used to describe bounds for diagrams, which can be summed easily.
- Hints that we may setup approximations for Feynman integrals that become more accurate the larger the diagram gets.

EN Argyres, AFW van Hameren, RHP Kleiss, and
CG Papadopoulos. Zero-dimensional field theory. The European Physical Journal C-Particles and Fields, 19(3):567-582, 2001.
Carl M Bender and Tai Tsun Wu. Anharmonic oscillator. Physical Review, 184(5):1231, 1969.
Alain Connes and Dirk Kreimer. Hopf algebras, renormalization and noncommutative geometry. In Quantum field theory: perspective and prospective, pages 59-109. Springer, 1999.
Predrag Cvitanović, B Lautrup, and Robert B Pearson. Number and weights of feynman diagrams. Physical Review D, 18(6): 1939, 1978.
Paul Erdös and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae (Debrecen), 6:290-297, 1959.
Bertrand Eynard and Nicolas Orantin. Invariants of algebraic curves and topological expansion. arXiv preprint math-ph/0702045, 2007.
CA Hurst. The enumeration of graphs in the feynman-dyson technique. In Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, volume 214, pages 44-61. The Royal Society, 1952.
Maxim Kontsevich. Intersection theory on the moduli space of curves and the matrix airy function. Communications in Mathematical Physics, 147(1):1-23, 1992.
MB. Summing bounds on Feynman amplitudes. (in preparation), 2017.

Luca Guido Molinari and Nicola Manini. Enumeration of many-body skeleton diagrams. The European Physical Journal B-Condensed Matter and Complex Systems, 51(3):331-336, 2006.

Erik Panzer. Talk given at humboldt-university. 2016.

[^0]: ${ }^{1}$ borinsky@physik.hu-berlin.de

