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Physical motivation

Often, the perturbation expansions turn out to have
vanishing radius of convergence!

Dyson’s argument: Let

F (α) = a0 + a1α + a2α
2 + . . . (1)

be a physical quantity in QED which is calculated as a formal
power series in α.

If F is analytic at α = 0 we can analytically continue to
negative α, resulting in a QFT where equal charges attract.

The fictitious QFT will have no stable ground state.
⇒ contradiction ⇒ F (α) cannot be analytic at α = 0.
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First step: Number of diagrams

The divergence of the perturbative expansion is believed to be
caused by the proliferation of Feynman diagrams.

Feynman diagrams can be counted rather easily using
zero-dimensional field theory.

The integral

Z (~) =

∫
R

dx√
2π~

e
1
~

(
− x2

2
+F (x)

)

is to be interpreted as a formal power series Cvitanović et al.
[1978], Argyres et al. [2001], Hurst [1952], Molinari and
Manini [2006] .

Possible ‘interactions’ are encoded in F (x).
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Example

Z stir(~) :=
Γ
(

1
~
)

√
2π~

(
1
~
) 1

~ e−
1
~

=

∫
R

dx√
2π~

e
1
~

(
− x2

2
−(ex−1−x− x2

2
)
)

Combinatorial integral representation of Stirling’s famous
(asymptotic) expansion of the Gamma-function.

Counts the (orbifold) Euler characteristic of the moduli space
of (stable) open curves Kontsevich [1992],

logZ stir(~) =
∑
g ,n

n+2g−2≥0

χ(Mg ,n)

n!
~n+2g−2
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Example

Z stir(~) :=

∫
R

dx√
2π~

e
1
~

(
− x2

2
−(ex−1−x− x2

2
)
)

Set F (x) = −(ex − 1− x − x2

2 ). Combinatorial: All vertices
are allowed and λk = −1.

Diagrammatically:

Z stir(~) = 1 +
1

8
+

1

12
+

1

8
+ . . .

= 1 + ~ (
1

8
(−1)2 +

1

12
(−1)2 +

1

8
(−1))︸ ︷︷ ︸

= 1
12

+ . . .

= 1 + ~
1

12
+ ~2 1

288
− ~3 139

51840
− ~4 571

2488320
+ . . .
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Computation

Defines a map F : x3R[[x ]]→ R[[~]].

Suitable for studying random graphs Erdös and Rényi [1959].

Efficient calculation is possible using an interpretation as a
hyperelliptic curve.
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Interpretation as hyperelliptic curve

Z (~) =
∞∑
n=0

(2n − 1)!![y2n]G ′(y)

where G (y) is the (positive) solution of y2

2 = G(y)2

2 − F (G (y)).

The implicit equation y2

2 = G(y)2

2 − F (G (y)) defines a
complex curve in C2.

The asymptotics of Z (~) are governed by the asymptotics of
the convergent power series G (y).

Similar structures to topological recursion Eynard and
Orantin [2007].
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Figure: Plot of the elliptic curve y2

2 = x2

2 −
x3

3! , which can be associated
to the perturbative expansion of zero-dimensional ϕ3-theory. The

dominant singularity can be found at (x , y) =
(

2, 2√
3

)
.
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Renormalization can be used to restrict the number of
diagrams.

Using BPHZ renormalization, the number of skeleton
diagrams is obtained.

More sophisticated techniques can be used to restrict to more
general classes of diagrams ⇒ Hopf algebra of Feynman
diagrams Connes and Kreimer [1999].

Answers question by Freeman Dyson: Number of skeleton
diagrams in quenched QED is

e−2(2n − 1)!!

(
1− 6

2n + 1

− 4

(2n − 1)(2n + 1)
− 218

3

1

(2n − 3)(2n − 1)(2n + 1)
+ . . .

)
,

Hopf algebra techniques can be used to evaluate random
graph models.
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Bounds

There are many ways to impose bounds on the value of
Feynman integrals Bender and Wu [1969].

Interesting algebraic structure: The ‘Hepp-bound’.

Renormalization group invariant part of the amplitude is
bounded Panzer [2016]:

P(Γ) =

∫
dΩ

ψ
D
2

≤
∑

∅⊂γ1⊂···⊂γn−1⊂Γ

1

ωD(γ1) · · ·ωD(γn)

Sum over all flags, maximal chains of 1PI subdiagrams of Γ.

ωD assigns the superficial degree of divergence to the
subgraph γi .
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These bounds can be summed over all diagrams.

The generating function for the sum fulfills a non-linear ODE
for instance in φ4 MB [2017]:

(
1

2
x∂x − 1)F (x) =

1

2
~
(
∂2
x log

1

1− F (x)

−
[(

1 +
x2

2
∂2
ξ

)
∂2
ξ log

1

1− F (ξ)

]
ξ=0

)

Also carries interesting Hopf-algebraic structures.

Related to combinatorial constructions on graphs: Ear
decompositions and Fulkerson conjecture.
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Summary

Renormalization together with the divergence of the
perturbation expansion shows very interesting mathematical
structures.

Hopf algebra techniques enable us to extend the notion of
renormalization to evaluate restricted random graph models.

Similar structures can be used to describe bounds for
diagrams, which can be summed easily.

Hints that we may setup approximations for Feynman integrals
that become more accurate the larger the diagram gets.
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