The Euler characteristic of $\text{Out}(F_n)$

Michael Borinsky, Nikhef
February 7, Emmy-Noether-Seminar - Universität Erlangen

joint work with Karen Vogtmann
arXiv:1907.03543
Introduction I: Groups
Automorphisms of groups

- Take a group G
Automorphisms of groups

- Take a group G
- An **automorphism** of G, $\rho \in \text{Aut}(G)$ is a bijection

\[\rho : G \to G \]

such that $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$ for all $x, y \in G$
Automorphisms of groups

• Take a group G

• An automorphism of G, $\rho \in \text{Aut}(G)$ is a bijection

$$\rho : G \rightarrow G$$

such that $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$ for all $x, y \in G$

• Normal subgroup: $\text{Inn}(G) \triangleleft \text{Aut}(G)$, the inner automorphisms.
Automorphisms of groups

• Take a group G
• An **automorphism** of G, $\rho \in \text{Aut}(G)$ is a bijection

$$\rho : G \rightarrow G$$

such that $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$ for all $x, y \in G$

• Normal subgroup: $\text{Inn}(G) \triangleleft \text{Aut}(G)$, the **inner** automorphisms.
• We have, $\rho_h \in \text{Inn}(G)$

$$\rho_h : G \rightarrow G,$$

$$g \mapsto h^{-1}gh$$

for each $h \in G$.
Automorphisms of groups

- Take a group G
- An automorphism of G, $\rho \in \text{Aut}(G)$ is a bijection

$$\rho : G \to G$$

such that $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$ for all $x, y \in G$

- Normal subgroup: $\text{Inn}(G) \triangleleft \text{Aut}(G)$, the inner automorphisms.
- We have, $\rho_h \in \text{Inn}(G)$

$$\rho_h : G \to G,$$

$$g \mapsto h^{-1}gh$$

for each $h \in G$.

- Outer automorphisms: $\text{Out}(G) = \text{Aut}(G)/\text{Inn}(G)$
Automorphisms of the free group

Consider the free group with n generators

$$F_n = \langle a_1, \ldots, a_n \rangle$$

E.g. $a_1a_3^{-5}a_2 \in F_n$
Automorphisms of the free group

• Consider the free group with \(n \) generators

\[F_n = \langle a_1, \ldots, a_n \rangle \]

E.g. \(a_1 a_3^{-5} a_2 \in F_n \)

• The group \(\text{Out}(F_n) \) is our main object of interest.
Some properties of $\text{Out}(F_n)$

- Generated by

\[a_1 \mapsto a_1 a_2 \quad a_2 \mapsto a_2 \quad a_3 \mapsto a_3 \quad \ldots \]

and

\[a_1 \mapsto a_1^{-1} \quad a_2 \mapsto a_2 \quad a_3 \mapsto a_3 \quad \ldots \]

and permutations of the letters.
Some properties of $\text{Out}(F_n)$

- Generated by

$$a_1 \mapsto a_1a_2 \quad a_2 \mapsto a_2 \quad a_3 \mapsto a_3 \quad \ldots$$

and

$$a_1 \mapsto a_1^{-1} \quad a_2 \mapsto a_2 \quad a_3 \mapsto a_3 \quad \ldots$$

and permutations of the letters.

- The fundamental group of a graph is always a free group,

$$\text{Out}(F_n) = \text{Out}(\pi_1(\Gamma))$$

for a connected graph Γ with n independent cycles.
Another example of an outer automorphism group:
the mapping class group
• Another example of an outer automorphism group: the **mapping class group**

• The group of homeomorphisms of a closed, connected and orientable surface S_g of genus g up to isotopies

\[\text{MCG}(S_g) := \text{Out}(\pi_1(S_g)) \]
Example: Mapping class group of the torus

\[\text{MCG}(\mathbb{T}^2) = \text{Out}(\pi_1(\mathbb{T}^2)) \]

The group of homeomorphisms \(\mathbb{T}^2 \to \mathbb{T}^2 \) up to an isotopy:

\[\Rightarrow \quad \text{generated by Dehn twists} \quad \Rightarrow \quad \text{SL}(2, \mathbb{Z}) \]
Introduction II: Spaces
How to study such groups?

How to study groups such as $\text{MCG}(S)$ or $\text{Out}(F_n)$?
How to study such groups?

How to study groups such as $\text{MCG}(S)$ or $\text{Out}(F_n)$?

Main idea

Realize G as symmetries of some geometric object.

Due to Stallings, Thurston, Gromov, ... (1970–)
For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.
For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

\Rightarrow A point in Teichmüller space $T(S)$ is a pair, (X, μ)

- A Riemann surface X.
- A marking: a homeomorphism $\mu : S \to X$.

![Diagram of a closed, connected, and orientable surface S being mapped to a Riemann surface X via a homeomorphism μ.]
For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

\Rightarrow A point in Teichmüller space $T(S)$ is a pair, (X, μ)

- A Riemann surface X.
- A marking: a homeomorphism $\mu : S \to X$.

MCG(S) acts on $T(S)$ by composing to the marking:

$$(X, \mu) \mapsto (X, \mu \circ g^{-1})$$

for some $g \in \text{MCG}(S)$.

For $\text{Out}(F_n)$: Outer space

Idea: Mimic previous construction for $\text{Out}(F_n)$.

Culler, Vogtmann (1986)
For $\text{Out}(F_n)$: Outer space

Idea: Mimic previous construction for $\text{Out}(F_n)$.

Culler, Vogtmann (1986)

Let R_n be the rose with n petals.

$R_3 = \text{rose diagram}$
For $\text{Out}(F_n)$: Outer space

Idea: Mimic previous construction for $\text{Out}(F_n)$.

Culler, Vogtmann (1986)

Let R_n be the rose with n petals.

$R_3 = \begin{array}{c}
\end{array}$

A point in Outer space O_n is a pair, (G, μ)

- A connected graph G with a length assigned to each edge.
- A marking: a homotopy $\mu : R_n \rightarrow G$.
For $\text{Out}(F_n)$: Outer space

Idea: Mimic previous construction for $\text{Out}(F_n)$.

Culler, Vogtmann (1986)

Let R_n be the rose with n petals.

\[R_3 = \begin{array}{c} \text{Diagram of a rose with 3 petals} \end{array} \]

\Rightarrow A point in Outer space \mathcal{O}_n is a pair, (G, μ)
- A connected graph G with a length assigned to each edge.
- A marking: a homotopy $\mu : R_n \to G$.

Out(F_n) acts on \mathcal{O}_n by composing to the marking:

$$(\Gamma, \mu) \mapsto (\Gamma, \mu \circ g^{-1}) \text{ for some } g \in \text{Out}(F_n) = \text{Out}(\pi_1(R_n))$$
Examples of applications of Outer space

- The group $\text{Out}(F_n)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics
Examples of applications of Outer space

- The group $\text{Out}(F_n)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics:

 Scalar QFT \sim Integrals over $O_n / \text{Out}(F_n)$
Examples of applications of Outer space

• The group Out(F_n)
• Moduli spaces of punctured surfaces
• Tropical curves
• Invariants of symplectic manifolds
• Classical modular forms
• (Mathematical) physics :

\[
\text{Scalar QFT} \sim \text{Integrals over } \mathcal{O}_n / \text{Out}(F_n)
\]

analogous to

\[
2D \text{ Quantum gravity} \sim \text{Integral over } T(S) / \text{MCG}(S)
\]
• The quotient space $\mathcal{G}_n := \mathcal{O}_n / \text{Out}(F_n)$ is called the moduli space of graphs.
The quotient space $G_n := \mathcal{O}_n / \text{Out}(F_n)$ is called the moduli space of graphs.

Its cousin $\mathcal{M}_g = T(S_g) / \text{MCG}(S_g)$ is the moduli space of curves.
Moduli spaces

- The quotient space $G_n := O_n / \text{Out}(F_n)$ is called the moduli space of graphs.
- Its cousin $\mathcal{M}_g = T(S_g) / \text{MCG}(S_g)$ is the moduli space of curves.
- Both can be used to study the respective groups.
Summary of the respective groups and spaces

<table>
<thead>
<tr>
<th>Acts freely and properly on</th>
<th>$\text{MCG}(S_g)$</th>
<th>$\text{Out}(F_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotient X/G</td>
<td>$\mathcal{T}(S_g)$</td>
<td>\mathcal{O}_n</td>
</tr>
<tr>
<td>Moduli space of curves</td>
<td>\mathcal{M}_g</td>
<td>Moduli space of graphs \mathcal{G}_n</td>
</tr>
</tbody>
</table>
Invariants
Algebraic invariants

- $H_\bullet(\text{Out}(F_n); \mathbb{Q}) \cong H_\bullet(\mathcal{O}_n / \text{Out}(F_n); \mathbb{Q}) = H_\bullet(G_n; \mathbb{Q})$, as \mathcal{O}_n is contractible Culler, Vogtmann (1986).
Algebraic invariants

• $H_\bullet(\text{Out}(F_n); \mathbb{Q}) \cong H_\bullet(\mathcal{O}_n / \text{Out}(F_n); \mathbb{Q}) = H_\bullet(\mathcal{G}_n; \mathbb{Q})$, as \mathcal{O}_n is contractible Culler, Vogtmann (1986).

⇒ Study $\text{Out}(F_n)$ using \mathcal{G}_n!
Algebraic invariants

- \(H_\bullet(\text{Out}(F_n); \mathbb{Q}) \cong H_\bullet(\mathcal{O}_n / \text{Out}(F_n); \mathbb{Q}) = H_\bullet(\mathcal{G}_n; \mathbb{Q}) \), as \(\mathcal{O}_n \) is contractible \textbf{Culler, Vogtmann (1986)}.

\(\Rightarrow \) Study \(\text{Out}(F_n) \) using \(\mathcal{G}_n \)!

- One simple invariant: Euler characteristic
Further motivation to look at Euler characteristic of $\text{Out}(F_n)$

Consider the abelization map $F_n \rightarrow \mathbb{Z}^n$.
Further motivation to look at Euler characteristic of $Out(F_n)$

Consider the abelianization map $F_n \rightarrow \mathbb{Z}^n$.
⇒ Induces a group homomorphism

$Out(F_n) \rightarrow Out(\mathbb{Z}^n)$
Further motivation to look at Euler characteristic of $\text{Out}(F_n)$

Consider the abelization map $F_n \rightarrow \mathbb{Z}^n$.
⇒ Induces a group homomorphism

$$\text{Out}(F_n) \rightarrow \text{Out}(\mathbb{Z}^n)$$

$$= \text{GL}(n, \mathbb{Z})$$
Further motivation to look at Euler characteristic of $\text{Out}(F_n)$

Consider the abelization map $F_n \rightarrow \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$1 \rightarrow \mathcal{T}_n \rightarrow \text{Out}(F_n) \rightarrow \underbrace{\text{Out}(\mathbb{Z}^n)}_{=\text{GL}(n,\mathbb{Z})} \rightarrow 1$$
Further motivation to look at Euler characteristic of Out(F_n)

Consider the abelization map $F_n \to \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$1 \to \mathcal{T}_n \to \text{Out}(F_n) \to \underbrace{\text{Out}(\mathbb{Z}^n)}_{= \text{GL}(n, \mathbb{Z})} \to 1$$

- \mathcal{T}_n the ‘non-abelian’ part of Out(F_n) is interesting.
Further motivation to look at Euler characteristic of $\text{Out}(F_n)$

Consider the abelization map $F_n \rightarrow \mathbb{Z}^n$.

\Rightarrow Induces a group homomorphism

$$1 \rightarrow T_n \rightarrow \text{Out}(F_n) \rightarrow \underbrace{\text{Out}(\mathbb{Z}^n)}_{=\text{GL}(n, \mathbb{Z})} \rightarrow 1$$

- T_n the ‘non-abelian’ part of $\text{Out}(F_n)$ is interesting.
- By the short exact sequence above

$$\chi(\text{Out}(F_n)) = \chi(\text{GL}(n, \mathbb{Z})) \chi(T_n)$$
Further motivation to look at Euler characteristic of $\text{Out}(F_n)$

Consider the abelization map $F_n \to \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$1 \to \mathcal{T}_n \to \text{Out}(F_n) \to \underbrace{\text{Out}(\mathbb{Z}^n)}_{\text{GL}(n,\mathbb{Z})} \to 1$$

• \mathcal{T}_n the ‘non-abelian’ part of $\text{Out}(F_n)$ is interesting.

• By the short exact sequence above

$$\chi(\text{Out}(F_n)) = \underbrace{\chi(\text{GL}(n,\mathbb{Z}))}_{=0} \chi(\mathcal{T}_n)$$
Further motivation to look at Euler characteristic of $\text{Out}(F_n)$

Consider the abelianization map $F_n \to \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$1 \to \mathcal{T}_n \to \text{Out}(F_n) \to \text{Out}(\mathbb{Z}^n) \to 1$$

$$= \text{GL}(n, \mathbb{Z})$$

- \mathcal{T}_n the ‘non-abelian’ part of $\text{Out}(F_n)$ is interesting.
- By the short exact sequence above

$$\chi(\text{Out}(F_n)) = \chi(\text{GL}(n, \mathbb{Z})) \chi(\mathcal{T}_n)$$

$$= 0$$

⇒ \mathcal{T}_n does not have finitely-generated homology if $\chi(\text{Out}(F_n)) \neq 0$.

14
<table>
<thead>
<tr>
<th>Conjecture</th>
<th>Smillie-Vogtmann (1987)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi(\text{Out}(F_n)) \neq 0$ for all $n \geq 2$ and $</td>
<td>\chi(\text{Out}(F_n))</td>
</tr>
</tbody>
</table>

Based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.
Conjectures

<table>
<thead>
<tr>
<th>Conjecture</th>
<th>Smillie-Vogtmann (1987)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi(\text{Out}(F_n))$ $\neq 0$ for all $n \geq 2$</td>
<td></td>
</tr>
<tr>
<td>and $</td>
<td>\chi(\text{Out}(F_n))</td>
</tr>
</tbody>
</table>

based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

<table>
<thead>
<tr>
<th>Conjecture</th>
<th>Magnus (1934)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{T}_n is not finitely presentable.</td>
<td></td>
</tr>
</tbody>
</table>
Conjectures

Conjecture Smillie-Vogtmann (1987)

\[\chi(\text{Out}(F_n)) \neq 0 \text{ for all } n \geq 2 \]

and \(|\chi(\text{Out}(F_n))| \) grows exponentially for \(n \to \infty \).

Based on initial computations by Smillie-Vogtmann (1987) up to \(n \leq 11 \). Later strengthened by Zagier (1989) up to \(n \leq 100 \).

Conjecture Magnus (1934)

\(\mathcal{T}_n \) is not finitely presentable.

In topological terms, i.e. \(\dim(\mathcal{H}_2(\mathcal{T}_n)) = \infty \),

which implies that \(\mathcal{T}_n \) does not have finitely-generated homology.
Conjectures

Conjecture Smillie-Vogtmann (1987)

\[\chi(\text{Out}(F_n)) \neq 0 \text{ for all } n \geq 2 \]
and \[|\chi(\text{Out}(F_n))| \text{ grows exponentially for } n \to \infty. \]

based on initial computations by Smillie-Vogtmann (1987) up to \(n \leq 11 \). Later strengthened by Zagier (1989) up to \(n \leq 100 \).

Conjecture Magnus (1934)

\(\mathcal{T}_n \) is not finitely presentable.

In topological terms, i.e. \(\dim(H_2(\mathcal{T}_n)) = \infty \), which implies that \(\mathcal{T}_n \) does not have finitely-generated homology.

Theorem Bestvina, Bux, Margalit (2007)

\(\mathcal{T}_n \) does not have finitely-generated homology.
Results: $\chi(\text{Out}(F_n)) \neq 0$
\begin{align*}
\chi(\text{Out}(F_n)) &< 0 \text{ for all } n \geq 2
\end{align*}
Theorem A MB-Vogtmann (2019)

\[\chi(\text{Out}(F_n)) < 0 \text{ for all } n \geq 2 \]

\[\chi(\text{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n - 3/2)}{\log^2 n} \text{ as } n \to \infty. \]
Theorem A MB-Vogtmann (2019)

\[
\chi(\text{Out}(F_n)) < 0 \text{ for all } n \geq 2 \\
\chi(\text{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n - 3/2)}{\log^2 n} \text{ as } n \to \infty.
\]

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:
Theorem A MB-Vogtmann (2019)

\[
\chi(\text{Out}(F_n)) < 0 \text{ for all } n \geq 2 \\
\chi(\text{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n - 3/2)}{\log^2 n} \text{ as } n \to \infty.
\]

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:

\[
\Rightarrow \text{ Huge amount of unstable homology in odd dimensions.}
\]
Theorem A MB-Vogtmann (2019)

\[
\chi(\text{Out}(F_n)) < 0 \text{ for all } n \geq 2 \\
\chi(\text{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n - 3/2)}{\log^2 n} \text{ as } n \to \infty.
\]

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:

⇒ Huge amount of unstable homology in odd dimensions.
 ● Only one odd-dimensional class known Bartholdi (2016).
Theorem A MB-Vogtmann (2019)

\[
\chi(\text{Out}(F_n)) < 0 \text{ for all } n \geq 2 \\
\chi(\text{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n - 3/2)}{\log^2 n} \text{ as } n \to \infty.
\]

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:

\[\Rightarrow\] Huge amount of unstable homology in odd dimensions.

- Only one odd-dimensional class known Bartholdi (2016).
- Where does all this homology come from?
This Theorem A follows from an implicit expression for $\chi(\text{Out}(F_n))$:
This Theorem A follows from an implicit expression for \(\chi(\text{Out}(F_n)) \):

Theorem B MB-Vogtmann (2019)

\[
\sqrt{2\pi} e^{-N} N^N \sim \sum_{k \geq 0} a_k (-1)^k \Gamma(N + 1/2 - k) \text{ as } N \to \infty
\]

where

\[
\sum_{k \geq 0} a_k z^k = \exp \left(\sum_{n \geq 0} \chi(\text{Out}(F_{n+1})) z^n \right)
\]
This Theorem A follows from an implicit expression for $\chi(\text{Out}(F_n))$:

Theorem B MB-Vogtmann (2019)

$$\sqrt{2\pi} e^{-N} N^N \sim \sum_{k \geq 0} a_k (-1)^k \Gamma(N + 1/2 - k) \quad \text{as} \quad N \to \infty$$

where

$$\sum_{k \geq 0} a_k z^k = \exp \left(\sum_{n \geq 0} \chi(\text{Out}(F_{n+1})) z^n \right)$$

$\Rightarrow \chi(\text{Out}(F_n))$ are the coefficients of an asymptotic expansion.
This Theorem A follows from an implicit expression for \(\chi(\text{Out}(F_n)) \):

\[\sqrt{2\pi} e^{-N} N^N \sim \sum_{k \geq 0} a_k (-1)^k \Gamma(N + 1/2 - k) \quad \text{as } N \to \infty \]

where \(\sum_{k \geq 0} a_k z^k = \exp \left(\sum_{n \geq 0} \chi(\text{Out}(F_{n+1})) z^n \right) \)

\Rightarrow \chi(\text{Out}(F_n)) \) are the coefficients of an asymptotic expansion.

- An analytic argument is needed to prove Theorem A from Theorem B.
This Theorem A follows from an implicit expression for \(\chi(\text{Out}(F_n)) \):

Theorem B MB-Vogtmann (2019)

\[\sqrt{2\pi} e^{-N} N^N \sim \sum_{k \geq 0} a_k (-1)^k \Gamma(N + 1/2 - k) \text{ as } N \to \infty \]

where \[\sum_{k \geq 0} a_k z^k = \exp \left(\sum_{n \geq 0} \chi(\text{Out}(F_{n+1})) z^n \right) \]

\[\Rightarrow \chi(\text{Out}(F_n)) \] are the coefficients of an asymptotic expansion.

- An analytic argument is needed to prove Theorem A from Theorem B.
- In this talk: Focus on proof of Theorem B.
Analogy to the mapping class group
Harer-Zagier formula for $\chi(\text{MCG}(S_g))$

Similar result for the mapping class group/moduli space of curves:
Harer-Zagier formula for $\chi(\text{MCG}(S_g))$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$\chi(\mathcal{M}_g) = \chi(\text{MCG}(S_g)) = \frac{B_{2g}}{4g(g - 1)} \quad g \geq 2$$
Harer-Zagier formula for $\chi(\text{MCG}(S_g))$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

\[
\chi(\mathcal{M}_g) = \chi(\text{MCG}(S_g)) = \frac{B_{2g}}{4g(g - 1)} \quad g \geq 2
\]

- Original proof by Harer and Zagier in 1986.
Harer-Zagier formula for $\chi(MCG(S_g))$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

\[
\chi(M_g) = \chi(MCG(S_g)) = \frac{B_{2g}}{4g(g-1)} \quad g \geq 2
\]

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
Harer-Zagier formula for $\chi(\text{MCG}(S_g))$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$\chi(\mathcal{M}_g) = \chi(\text{MCG}(S_g)) = \frac{B_{2g}}{4g(g-1)} \quad g \geq 2$$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.
Harer-Zagier formula for $\chi(MCG(S_g))$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

\[
\chi(M_g) = \chi(MCG(S_g)) = \frac{B_{2g}}{4g(g - 1)} \quad g \geq 2
\]

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.

\Rightarrow Kontsevich's proof served as a blueprint for $\chi(\text{Out}(F_n))$.

18
Sketch of Kontsevich’s TFT proof of the Harer-Zagier formula
Step 1 of Kontsevich’s proof

Generalize from \mathcal{M}_g to $\mathcal{M}_{g,n}$, the moduli space of surfaces of genus g and n punctures.
Step 1 of Kontsevich’s proof

Generalize from M_g to $M_{g,n}$, the moduli space of surfaces of genus g and n punctures.

We can ‘forget one puncture’:

$$ \text{MCG}(S_{g,n+1}) \rightarrow \text{MCG}(S_{g,n}) $$
Generalize from \mathcal{M}_g to $\mathcal{M}_{g,n}$, the moduli space of surfaces of genus g and n punctures.

We can ‘forget one puncture’:

$$1 \to \pi_1(S_{g,n}) \to \text{MCG}(S_{g,n+1}) \to \text{MCG}(S_{g,n}) \to 1$$

$$\Rightarrow \chi(\text{MCG}(S_{g,n+1})) = \chi(\mathcal{M}_{g,n+1}) = \chi(\pi_1(S_{g,n})) \chi(\mathcal{M}_{g,n})$$
Step 1 of Kontsevich’s proof

Generalize from \mathcal{M}_g to $\mathcal{M}_{g,n}$, the moduli space of surfaces of genus g and n punctures.

We can ‘forget one puncture’:

$$1 \to \pi_1(S_{g,n}) \to \text{MCG}(S_{g,n+1}) \to \text{MCG}(S_{g,n}) \to 1$$

$$\Rightarrow \chi(\text{MCG}(S_{g,n+1})) = \chi(\mathcal{M}_{g,n+1}) = \chi(\pi_1(S_{g,n})) \chi(\mathcal{M}_g)$$

$$= 2 - 2g - n$$
Step 2 of Kontsevich’s proof

- Use a combinatorial model for $\mathcal{M}_{g,n}$
Step 2 of Kontsevich’s proof

- Use a combinatorial model for $\mathcal{M}_{g,n}$

\Rightarrow Ribbon graphs Penner (1986)
Step 2 of Kontsevich’s proof

- Use a combinatorial model for $\mathcal{M}_{g,n}$

\Rightarrow Ribbon graphs Penner (1986)

Every point in $\mathcal{M}_{g,n}$ can be associated with a ribbon graph Γ such that

- Γ has n boundary components: $h_0(\partial \Gamma) = n$
- $\chi(\Gamma) = |V_\Gamma| - |E_\Gamma| = 2 - 2g - n$.
Step 2 of Kontsevich’s proof

- Use a combinatorial model for $\mathcal{M}_{g,n}$

\Rightarrow Ribbon graphs Penner (1986)

Every point in $\mathcal{M}_{g,n}$ can be associated with a ribbon graph Γ such that

- Γ has n boundary components: $h_0(\partial \Gamma) = n$
- $\chi(\Gamma) = |V_\Gamma| - |E_\Gamma| = 2 - 2g - n$.

\Rightarrow Γ can be interpreted as a surface of genus g with n punctures.
Step 2 of Kontsevich’s proof

- Use a combinatorial model for $\mathcal{M}_{g,n}$

\Rightarrow Ribbon graphs Penner (1986)

Every point in $\mathcal{M}_{g,n}$ can be associated with a ribbon graph Γ such that

- Γ has n boundary components: $h_0(\partial \Gamma) = n$
- $\chi(\Gamma) = |V_\Gamma| - |E_\Gamma| = 2 - 2g - n$.

\Rightarrow Γ can be interpreted as a surface of genus g with n punctures.
Step 3 of Kontsevich’s proof

\[\chi(\mathcal{M}_{g,n}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\text{Stab}(\sigma)|} \]
Step 3 of Kontsevich’s proof

\[\chi(M_{g,n}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\text{Stab}(\sigma)|} \]

sum over representatives of cells of \(M_{g,n} \)

\(\sim \) ribbon graphs \(\Gamma \)

dimension of resp. strata

\[= \text{l.v.1 mod 2} \]

stabilizer under action of \(MCG \)

\[= 1 \Delta n + \Pi \]
Step 3 of Kontsevich’s proof

\[\chi(\mathcal{M}_{g,n}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\text{Stab}(\sigma)|} \]

\[= \sum_{\Gamma} \frac{(-1)^{|V_\Gamma|}}{|\text{Aut} \Gamma|} \]

subject to:
- \(h_0(\partial \Gamma) = n \)
- \(\chi(\Gamma) = 2 - 2g - n \)
Step 3 of Kontsevich’s proof

\[\chi(M_{g,n}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\text{Stab}(\sigma)|} \]

\[= \sum_{\Gamma} \frac{(-1)^{|V_\Gamma|}}{|\text{Aut} \Gamma|} \]

Used by Penner (1988) to calculate \(\chi(M_g) \) with Matrix models.
Step 4 of Kontsevich’s proof

Kontsevich’s simplification:

$$\sum_{g,n} \frac{\chi(M_{g,n})}{n!} z^{2-2g-n}$$
Step 4 of Kontsevich’s proof

Kontsevich’s simplification:

\[
\sum_{g,n} \frac{\chi(M_{g,n})}{n!} z^{2g-n} = \sum \sum \frac{(-1)^{|V_\Gamma|}}{|\text{Aut} \Gamma|} \frac{1}{n!} z^{\chi(\Gamma)}
\]

subject to:

- \(h_0(\partial \Gamma) = n\)
- \(\chi(\Gamma) = 2 - 2g - n\)
Step 4 of Kontsevich’s proof

Kontsevich’s simplification:

\[
\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum \sum \frac{(-1)^{|V_{\Gamma}|}}{|\text{Aut } \Gamma|} \frac{1}{n!} z^{\chi(\Gamma)}
\]

\[
= \sum_{\text{graphs } G} \frac{(-1)^{|V_{\Gamma}|}}{|\text{Aut } G|} z^{\chi(G)}
\]
Step 4 of Kontsevich’s proof

Kontsevich’s simplification:

\[
\sum_{g,n} \frac{\chi(M_{g,n})}{n!} z^{2-2g-n} = \sum_{g,n} \sum_{\text{ribbon graphs } \Gamma} \frac{(-1)^{|V_\Gamma|}}{|\text{Aut } \Gamma|} \frac{1}{n!} z^{\chi(\Gamma)}
\]

\[
= \sum_{\text{graphs } G} \frac{(-1)^{|V_G|}}{|\text{Aut } G|} z^{\chi(G)}
\]

This is the perturbative series of a simple TFT:

\[
= \log \left(\frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)} dx \right)
\]
Step 4 of Kontsevich’s proof

Kontsevich’s simplification:

\[
\sum_{g,n} \frac{\chi(M_{g,n})}{n!} z^{2g-n} = \sum \sum \frac{(-1)^{|V_\Gamma|}}{|\text{Aut } \Gamma|} \frac{1}{n!} z^{\chi(\Gamma)}
\]

\[
= \sum \frac{(-1)^{|V_G|}}{|\text{Aut } G|} z^{\chi(G)}
\]

This is the perturbative series of a simple TFT:

\[
= \log \left(\frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)} \, dx \right)
\]

Evaluation is classic (Stirling/Euler-Maclaurin formulas)

\[
= \sum_{k \geq 1} \frac{\zeta(-k)}{-k} z^{-k}
\]
Last step of Kontsevich’s proof

\[\sum_{g, n \atop 2-2g-n=k} \frac{\chi(\mathcal{M}_{g, n})}{n!} = \frac{B_{k+1}}{k(k+1)} \]
Last step of Kontsevich’s proof

\[
\sum_{g,n \mid 2-2g-n=k} \frac{\chi(\mathcal{M}_{g,n})}{n!} = \frac{B_{k+1}}{k(k+1)}
\]

\(\Rightarrow\) recover Harer-Zagier formula using the identity

\[\chi(\mathcal{M}_{g,n+1}) = (2 - 2g - n)\chi(\mathcal{M}_{g,n})\]
Analogous proof strategy for $\chi(\text{Out}(F_n))$ using renormalized TFTs
Generalize from $\text{Out}(F_n)$ to $A_{n,s}$ and from \mathcal{O}_n to $\mathcal{O}_{n,s}$, Outer space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)
Step 1

Generalize from $\text{Out}(F_n)$ to $A_{n,s}$ and from \mathcal{O}_n to $\mathcal{O}_{n,s}$, Outer space of graphs of rank n and s legs.
Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

$$1 \rightarrow F_n \rightarrow A_{n,s} \rightarrow A_{n,s-1} \rightarrow 1$$
Step 2

- Use a combinatorial model for $G_{n,s}$
Step 2

- Use a combinatorial model for $G_{n,s}$

\Rightarrow graphs with a forest Smillie-Vogtmann (1987):
Step 2

- Use a combinatorial model for $G_{n,s}$

\Rightarrow graphs with a forest Smillie-Vogtmann (1987):

A point in $G_{n,s}$ can be associated with a pair of a graph G and a forest $f \subseteq G$.
Step 2

- Use a combinatorial model for $G_{n,s}$

\Rightarrow graphs with a forest Smillie-Vogtmann (1987):

A point in $G_{n,s}$ can be associated with a pair of a graph G and a forest $f \subset G$.

\[(G, f)\]
Step 3

\[\chi(A_{n,s}) = \sum_{\sigma} \frac{(-1)^{\text{dim}(\sigma)}}{|\text{Stab}(\sigma)|} \]
Step 3

\[\chi(A_{n,s}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\text{Stab}(\sigma)|} \]

- Sum over representatives of cells of \(\Theta_{n,s}/A_{n,s} \)
- \(\Rightarrow \) legged graphs \(G \)
- Dimension of resp. strata \(= |E| \)
- Stabilizer under action of \(A_{n,s} \)
 \(= |A| + |G| \)
$$\chi(A_{n,s}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\text{Stab}(\sigma)|}$$

$$= \sum_{\text{graphs } G \text{ with } s \text{ legs}} \sum_{\text{forests } f \subset G} \frac{(-1)^{|E_f|}}{|\text{Aut } G|}$$

$$\text{rank}(\pi_1(G)) = n$$
Renormalized TFT interpretation MB-Vogtmann (2019):

\[\chi(A_{n,s}) = \sum_{\text{graphs } G \text{ with } s \text{ legs}} \frac{1}{|\text{Aut } G|} \sum_{\text{forests } f \subset G} (-1)^{|E_f|} \]
Renormalized TFT interpretation MB-Vogtmann (2019):

\[\chi(A_{n,s}) = \sum_{\text{graphs } G \text{ with } s \text{ legs}} \frac{1}{|\text{Aut } G|} \sum_{\text{forests } f \subset G} (-1)^{|E_f|} =: \tau(G) \]
Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

\[\chi(A_{n,s}) = \sum_{\text{graphs } G \text{ with } s \text{ legs}} \frac{1}{|\text{Aut } G|} \sum_{\text{forests } f \subset G} (-1)^{|E_f|} \]

\(\tau \) fulfills the identities \(\tau(\emptyset) = 1 \) and

\[\sum_{g \subset G, \text{ bridgeless}} \tau(g)(-1)^{|E_{G/g}|} = 0 \text{ for all } G \neq \emptyset \]
Renormalized TFT interpretation \textbf{MB-Vogtmann (2019)}:

\[
\chi(A_{n,s}) = \sum_{\text{graphs } G \text{ with } s \text{ legs}} \frac{1}{|\text{Aut } G|} \sum_{\text{forests } f \subset G} (-1)^{|E_f|}
\]

\[
\tau \text{ fulfills the identities } \tau(\emptyset) = 1 \text{ and } \sum_{g \subset G \text{ bridgeless}} \tau(g)(-1)^{|E_{G/g}|} = 0 \text{ for all } G \neq \emptyset
\]

\[\Rightarrow \tau \text{ is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)}\]
Renormalized TFT interpretation \textbf{MB-Vogtmann (2019)}:

\[
\chi(A_{n,s}) = \sum_{\text{graphs } G \text{ with } s \text{ legs}} \frac{1}{|\text{Aut } G|} \sum_{\text{forests } f \subset G} (-1)^{|E_f|}
\]

\[
\tau \text{ fulfills the identities } \tau(\emptyset) = 1 \text{ and } \sum_{g \subset G \text{ bridgeless}} \tau(g)(-1)^{|E_{G/g}|} = 0 \text{ for all } G \neq \emptyset
\]

\[\Rightarrow \tau \text{ is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)}\]

The group invariants \(\chi(A_{n,s})\) are encoded in a renormalized TFT.
Let

\[T(z, x) = \sum_{n, s \geq 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!} \]
Let \[T(z, x) = \sum_{n,s \geq 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!} \]

then \[1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{T(z,x)} \, dx \]
Let \(T(z, x) = \sum_{n, s \geq 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!} \)

then \(1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{T(z,x)} \, dx \)

Using the short exact sequence, \(1 \to F_n \to A_{n,s} \to A_{n,s-1} \to 1 \) results in the action

\[
1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)+\frac{x}{2}+T(-xe^x)} \, dx
\]

where \(T(z) = \sum_{n \geq 1} \chi(\text{Out}(F_{n+1})) z^{-n} \).
Let \(T(z, x) = \sum_{n, s \geq 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!} \)

then

\[
1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{T(z,x)} \, dx
\]

Using the short exact sequence, \(1 \to F_n \to A_{n,s} \to A_{n,s-1} \to 1 \)
results in the action

\[
1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)+\frac{x}{2}+T(-xe^x)} \, dx
\]

where \(T(z) = \sum_{n \geq 1} \chi(\text{Out}(F_{n+1})) z^{-n} \).

This gives the implicit result in Theorem B.
Short summary:
Short summary:

- \(\chi(\text{Out}(F_n)) \neq 0 \)
Short summary:

• $\chi(\text{Out}(F_n)) \neq 0$

Open questions:

• The rapid growth of $\chi(\text{Out}(F_n))$ indicates that there is much unstable homology. What generates it?
Short summary:

- $\chi(\text{Out}(F_n)) \neq 0$

Open questions:

- The rapid growth of $\chi(\text{Out}(F_n))$ indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd
Summery/Questions/Outlook

Short summary:

- \(\chi(\text{Out}(F_n)) \neq 0 \)

Open questions:

- The rapid growth of \(\chi(\text{Out}(F_n)) \) indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd
- Can the TFT analysis be explained with a duality between \(\text{MCG}(S_g) \) and \(\text{Out}(F_n) \)? Obvious candidate: Koszul duality
Short summary:

- $\chi(\text{Out}(F_n)) \neq 0$

Open questions:

- The rapid growth of $\chi(\text{Out}(F_n))$ indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd
- Can the TFT analysis be explained with a duality between $\text{MCG}(S_g)$ and $\text{Out}(F_n)$? Obvious candidate: Koszul duality
- Can renormalized TFT arguments also be used for other groups? For instance RAAGs.