The Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Michael Borinsky, Nikhef
February 7, Emmy-Noether-Seminar - Universität Erlangen
joint work with Karen Vogtmann
arXiv:1907. 03543

Introduction I: Groups

Automorphisms of groups

- Take a group G

Automorphisms of groups

- Take a group G
- An automorphism of $G, \rho \in \operatorname{Aut}(G)$ is a bijection

$$
\rho: G \rightarrow G
$$

such that $\rho(x \cdot y)=\rho(x) \cdot \rho(y)$ for all $x, y \in G$

Automorphisms of groups

- Take a group G
- An automorphism of $G, \rho \in \operatorname{Aut}(G)$ is a bijection

$$
\begin{gathered}
\rho: G \rightarrow G \\
\text { such that } \rho(x \cdot y)=\rho(x) \cdot \rho(y) \text { for all } x, y \in G
\end{gathered}
$$

- Normal subgroup: $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$, the inner automorphisms.

Automorphisms of groups

- Take a group G
- An automorphism of $G, \rho \in \operatorname{Aut}(G)$ is a bijection

$$
\begin{gathered}
\rho: G \rightarrow G \\
\text { such that } \rho(x \cdot y)=\rho(x) \cdot \rho(y) \text { for all } x, y \in G
\end{gathered}
$$

- Normal subgroup: $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$, the inner automorphisms.
- We have, $\rho_{h} \in \operatorname{Inn}(G)$

$$
\begin{aligned}
\rho_{h}: G & \rightarrow G, \\
g & \mapsto h^{-1} g h
\end{aligned}
$$

for each $h \in G$.

Automorphisms of groups

- Take a group G
- An automorphism of $G, \rho \in \operatorname{Aut}(G)$ is a bijection

$$
\rho: G \rightarrow G
$$

such that $\rho(x \cdot y)=\rho(x) \cdot \rho(y)$ for all $x, y \in G$

- Normal subgroup: $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$, the inner automorphisms.
- We have, $\rho_{h} \in \operatorname{Inn}(G)$

$$
\begin{aligned}
\rho_{h}: G & \rightarrow G, \\
g & \mapsto h^{-1} g h
\end{aligned}
$$

for each $h \in G$.

- Outer automorphisms: Out $(G)=\operatorname{Aut}(G) / \operatorname{Inn}(G)$

Automorphisms of the free group

- Consider the free group with n generators

$$
F_{n}=\left\langle a_{1}, \ldots, a_{n}\right\rangle
$$

$$
\text { E.g. } a_{1} a_{3}^{-5} a_{2} \in F_{n}
$$

Automorphisms of the free group

- Consider the free group with n generators

$$
F_{n}=\left\langle a_{1}, \ldots, a_{n}\right\rangle
$$

$$
\text { E.g. } a_{1} a_{3}^{-5} a_{2} \in F_{n}
$$

- The group $\operatorname{Out}\left(F_{n}\right)$ is our main object of interest.

Some properties of $\operatorname{Out}\left(F_{n}\right)$

- Generated by

$$
\begin{array}{rlll}
& a_{1} \mapsto a_{1} a_{2} & a_{2} \mapsto a_{2} & a_{3} \mapsto a_{3} \\
\text { and } & a_{1} \mapsto a_{1}^{-1} & a_{2} \mapsto a_{2} & a_{3} \mapsto a_{3}
\end{array}
$$

and permutations of the letters.

Some properties of $\operatorname{Out}\left(F_{n}\right)$

- Generated by

$$
\begin{array}{lllll}
& a_{1} \mapsto a_{1} a_{2} & a_{2} \mapsto a_{2} & a_{3} \mapsto a_{3} & \cdots \\
\text { and } & a_{1} \mapsto a_{1}^{-1} & a_{2} \mapsto a_{2} & a_{3} \mapsto a_{3} & \ldots
\end{array}
$$

and permutations of the letters.

- The fundamental group of a graph is always a free group,

$$
\operatorname{Out}\left(F_{n}\right)=\operatorname{Out}\left(\pi_{1}(\Gamma)\right)
$$

for a connected graph 「 with n independent cycles.

Mapping class group

- Another example of an outer automorphism group: the mapping class group

Mapping class group

- Another example of an outer automorphism group: the mapping class group
- The group of homeomorphisms of a closed, connected and orientable surface S_{g} of genus g up to isotopies

$$
\operatorname{MCG}\left(S_{g}\right):=\operatorname{Out}\left(\pi_{1}\left(S_{g}\right)\right)
$$

Example: Mapping class group of the torus

$$
\operatorname{MCG}\left(\mathbb{T}^{2}\right)=\operatorname{Out}\left(\pi_{1}\left(\mathbb{T}^{2}\right)\right)
$$

The group of homeomorphisms $\mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ up to an isotopy:

Introduction II: Spaces

How to study such groups?

How to study groups such as $\operatorname{MCG}(S)$ or $\operatorname{Out}\left(F_{n}\right)$?

How to study such groups?

How to study groups such as $\operatorname{MCG}(S)$ or $\operatorname{Out}\left(F_{n}\right)$?

Main idea

Realize G as symmetries of some geometric object.

Due to Stallings, Thurston, Gromov, ... (1970-)

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.
\Rightarrow A point in Teichmüller space $T(S)$ is a pair, (X, μ)

- A Riemann surface X.
- A marking: a homeomorphism $\mu: S \rightarrow X$.

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.
\Rightarrow A point in Teichmüller space $T(S)$ is a pair, (X, μ)

- A Riemann surface X.
- A marking: a homeomorphism $\mu: S \rightarrow X$.

$$
S
$$

$\operatorname{MCG}(S)$ acts on $T(S)$ by composing to the marking:

$$
(X, \mu) \mapsto\left(X, \mu \circ g^{-1}\right) \text { for some } g \in \operatorname{MCG}(S)
$$

For Out $\left(F_{n}\right)$: Outer space

Idea: Mimic previous construction for $\operatorname{Out}\left(F_{n}\right)$.
Culler, Vogtmann (1986)

For Out $\left(F_{n}\right)$: Outer space

Idea: Mimic previous construction for $\operatorname{Out}\left(F_{n}\right)$.
Culler, Vogtmann (1986)
Let R_{n} be the rose with n petals.

$$
R_{3}=0
$$

For Out $\left(F_{n}\right)$: Outer space

Idea: Mimic previous construction for $\operatorname{Out}\left(F_{n}\right)$.
Culler, Vogtmann (1986)
Let R_{n} be the rose with n petals.

\Rightarrow A point in Outer space \mathcal{O}_{n} is a pair, (G, μ)

- A connected graph G with a length assigned to each edge.
- A marking: a homotopy $\mu: R_{n} \rightarrow G$.

For Out $\left(F_{n}\right)$: Outer space

Idea: Mimic previous construction for $\operatorname{Out}\left(F_{n}\right)$.
Culler, Vogtmann (1986)
Let R_{n} be the rose with n petals.

\Rightarrow A point in Outer space \mathcal{O}_{n} is a pair, (G, μ)

- A connected graph G with a length assigned to each edge.
- A marking: a homotopy $\mu: R_{n} \rightarrow G$.

Out $\left(F_{n}\right)$ acts on \mathcal{O}_{n} by composing to the marking:

$$
(\Gamma, \mu) \mapsto\left(\Gamma, \mu \circ g^{-1}\right) \text { for some } g \in \operatorname{Out}\left(F_{n}\right)=\operatorname{Out}\left(\pi_{1}\left(R_{n}\right)\right) .
$$

Vogtmann 2008

Examples of applications of Outer space

- The group $\operatorname{Out}\left(F_{n}\right)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics

Examples of applications of Outer space

- The group $\operatorname{Out}\left(F_{n}\right)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics :

$$
\text { Scalar QFT } \sim \text { Integrals over } \mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right)
$$

Examples of applications of Outer space

- The group $\operatorname{Out}\left(F_{n}\right)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics :

$$
\text { Scalar QFT } \sim \text { Integrals over } \mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right)
$$

analogous to

$$
\text { 2D Quantum gravity } \sim \text { Integral over } T(S) / \operatorname{MCG}(S)
$$

Moduli spaces

- The quotient space $\mathcal{G}_{n}:=\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right)$ is called the moduli space of graphs.

Moduli spaces

- The quotient space $\mathcal{G}_{n}:=\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right)$ is called the moduli space of graphs.
- Its cousin $\mathcal{M}_{g}=T\left(S_{g}\right) / \operatorname{MCG}\left(S_{g}\right)$ is the moduli space of curves.

Moduli spaces

- The quotient space $\mathcal{G}_{n}:=\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right)$ is called the moduli space of graphs.
- Its cousin $\mathcal{M}_{g}=T\left(S_{g}\right) / \operatorname{MCG}\left(S_{g}\right)$ is the moduli space of curves.
- Both can be used to study the respective groups.

Summary of the respective groups and spaces

	$\operatorname{MCG}\left(S_{g}\right)$	$\operatorname{Out}\left(F_{n}\right)$
acts freely and properly on	Teichmüller space $\mathcal{T}\left(S_{g}\right)$	Outer space \mathcal{O}_{n}
Quotient X / G	Moduli space of curves \mathcal{M}_{g}	Moduli space of graphs \mathcal{G}_{n}

Invariants

Algebraic invariants

- $H_{\bullet}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right) \simeq H_{\bullet}\left(\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=H_{\bullet}\left(\mathcal{G}_{n} ; \mathbb{Q}\right)$, as \mathcal{O}_{n} is contractible Culler, Vogtmann (1986).

Algebraic invariants

- $H_{0}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right) \simeq H_{0}\left(\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=H_{0}\left(\mathcal{G}_{n} ; \mathbb{Q}\right)$, as \mathcal{O}_{n} is contractible Culler, Vogtmann (1986).
\Rightarrow Study $\operatorname{Out}\left(F_{n}\right)$ using \mathcal{G}_{n} !

Algebraic invariants

- $H_{0}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right) \simeq H_{0}\left(\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=H_{0}\left(\mathcal{G}_{n} ; \mathbb{Q}\right)$, as \mathcal{O}_{n} is contractible Culler, Vogtmann (1986).
\Rightarrow Study $\operatorname{Out}\left(F_{n}\right)$ using $\mathcal{G}_{n}!$
- One simple invariant: Euler characteristic

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
\operatorname{Out}\left(F_{n}\right) \rightarrow \operatorname{Out}\left(\mathbb{Z}^{n}\right)
$$

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
\operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\operatorname{GL}(n, \mathbb{Z})}
$$

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=G L(n, \mathbb{Z})} \rightarrow 1
$$

Further motivation to look at Euler characteristic of Out $\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=G L(n, \mathbb{Z})} \rightarrow 1
$$

- \mathcal{T}_{n} the 'non-abelian' part of $\operatorname{Out}\left(F_{n}\right)$ is interesting.

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\mathrm{GL}(n, \mathbb{Z})} \rightarrow 1
$$

- \mathcal{T}_{n} the 'non-abelian' part of $\operatorname{Out}\left(F_{n}\right)$ is interesting.
- By the short exact sequence above

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right)=\chi(\operatorname{GL}(n, \mathbb{Z})) \chi\left(\mathcal{T}_{n}\right)
$$

Further motivation to look at Euler characteristic of Out $\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\mathrm{GL}(n, \mathbb{Z})} \rightarrow 1
$$

- \mathcal{T}_{n} the 'non-abelian' part of $\operatorname{Out}\left(F_{n}\right)$ is interesting.
- By the short exact sequence above

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right)=\underbrace{\chi(\operatorname{GL}(n, \mathbb{Z}))}_{=0} \chi\left(\mathcal{T}_{n}\right)
$$

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\mathrm{GL}(n, \mathbb{Z})} \rightarrow 1
$$

- \mathcal{T}_{n} the 'non-abelian' part of $\operatorname{Out}\left(F_{n}\right)$ is interesting.
- By the short exact sequence above

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right)=\underbrace{\chi(\operatorname{GL}(n, \mathbb{Z}))}_{=0} \chi\left(\mathcal{T}_{n}\right)
$$

$\Rightarrow \mathcal{T}_{n}$ does not have finitely-generated homology if $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$.

Conjectures

Conjecture Smillie-Vogtmann (1987)

$$
\begin{aligned}
& \qquad \quad \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0 \text { for all } n \geq 2 \\
& \text { and }\left|\chi\left(\operatorname{Out}\left(F_{n}\right)\right)\right| \text { grows exponentially for } n \rightarrow \infty
\end{aligned}
$$

based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

Conjectures

Conjecture Smillie-Vogtmann (1987)

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0 \text { for all } n \geq 2
$$

and $\left|\chi\left(\operatorname{Out}\left(F_{n}\right)\right)\right|$ grows exponentially for $n \rightarrow \infty$.
based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

Conjecture Magnus (1934)
\mathcal{T}_{n} is not finitely presentable.

Conjectures

Conjecture Smillie-Vogtmann (1987)

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0 \text { for all } n \geq 2
$$

and $\left|\chi\left(\operatorname{Out}\left(F_{n}\right)\right)\right|$ grows exponentially for $n \rightarrow \infty$.
based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

Conjecture Magnus (1934)

\mathcal{T}_{n} is not finitely presentable.
In topological terms, i.e. $\operatorname{dim}\left(H_{2}\left(\mathcal{T}_{n}\right)\right)=\infty$,
which implies that \mathcal{T}_{n} does not have finitely-generated homology.

Conjectures

Conjecture Smillie-Vogtmann (1987)

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0 \text { for all } n \geq 2
$$

and $\left|\chi\left(\operatorname{Out}\left(F_{n}\right)\right)\right|$ grows exponentially for $n \rightarrow \infty$.
based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

Conjecture Magnus (1934)
\mathcal{T}_{n} is not finitely presentable.
In topological terms, i.e. $\operatorname{dim}\left(H_{2}\left(\mathcal{T}_{n}\right)\right)=\infty$,
which implies that \mathcal{T}_{n} does not have finitely-generated homology.
Theorem Bestvina, Bux, Margalit (2007)
\mathcal{T}_{n} does not have finitely-generated homology.

Results: $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Theorem A MB-Vogtmann (2019)

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2
$$

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:
\Rightarrow Huge amount of unstable homology in odd dimensions.

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:
\Rightarrow Huge amount of unstable homology in odd dimensions.

- Only one odd-dimensional class known Bartholdi (2016).

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:
\Rightarrow Huge amount of unstable homology in odd dimensions.

- Only one odd-dimensional class known Bartholdi (2016).
- Where does all this homology come from?

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

Theorem B MB-Vogtmann (2019)

$$
\begin{gathered}
\sqrt{2 \pi} e^{-N} N^{N} \sim \sum_{k \geq 0} a_{k}(-1)^{k} \Gamma(N+1 / 2-k) \text { as } N \rightarrow \infty \\
\text { where } \sum_{k \geq 0} a_{k} z^{k}=\exp \left(\sum_{n \geq 0} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{n}\right)
\end{gathered}
$$

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

Theorem B MB-Vogtmann (2019)

$$
\begin{gathered}
\sqrt{2 \pi} e^{-N} N^{N} \sim \sum_{k \geq 0} a_{k}(-1)^{k} \Gamma(N+1 / 2-k) \text { as } N \rightarrow \infty \\
\text { where } \sum_{k \geq 0} a_{k} z^{k}=\exp \left(\sum_{n \geq 0} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{n}\right)
\end{gathered}
$$

$\Rightarrow \chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ are the coefficients of an asymptotic expansion.

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

Theorem B MB-Vogtmann (2019)

$$
\begin{gathered}
\sqrt{2 \pi} e^{-N} N^{N} \sim \sum_{k \geq 0} a_{k}(-1)^{k} \Gamma(N+1 / 2-k) \text { as } N \rightarrow \infty \\
\text { where } \sum_{k \geq 0} a_{k} z^{k}=\exp \left(\sum_{n \geq 0} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{n}\right)
\end{gathered}
$$

$\Rightarrow \chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ are the coefficients of an asymptotic expansion.

- An analytic argument is needed to prove Theorem A from Theorem B.

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

Theorem B MB-Vogtmann (2019)

$$
\begin{gathered}
\sqrt{2 \pi} e^{-N} N^{N} \sim \sum_{k \geq 0} a_{k}(-1)^{k} \Gamma(N+1 / 2-k) \text { as } N \rightarrow \infty \\
\text { where } \sum_{k \geq 0} a_{k} z^{k}=\exp \left(\sum_{n \geq 0} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{n}\right)
\end{gathered}
$$

$\Rightarrow \chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ are the coefficients of an asymptotic expansion.

- An analytic argument is needed to prove Theorem A from Theorem B.
- In this talk: Focus on proof of Theorem B

Analogy to the mapping class group

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

- Original proof by Harer and Zagier in 1986.

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.
\Rightarrow Kontsevich's proof served as a blueprint for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$.

Sketch of Kontsevich's TFT proof of the Harer-Zagier formula

Step 1 of Kontsevich's proof

Generalize from \mathcal{M}_{g} to $\mathcal{M}_{g, n}$, the moduli space of surfaces of genus g and n punctures.

Step 1 of Kontsevich's proof

Generalize from \mathcal{M}_{g} to $\mathcal{M}_{g, n}$, the moduli space of surfaces of genus g and n punctures.

We can 'forget one puncture':

$$
\operatorname{MCG}\left(S_{g, n+1}\right) \rightarrow \operatorname{MCG}\left(S_{g, n}\right)
$$

Step 1 of Kontsevich's proof

Generalize from \mathcal{M}_{g} to $\mathcal{M}_{g, n}$, the moduli space of surfaces of genus g and n punctures.
We can 'forget one puncture':

$$
1 \rightarrow \pi_{1}\left(S_{g, n}\right) \rightarrow \operatorname{MCG}\left(S_{g, n+1}\right) \rightarrow \operatorname{MCG}\left(S_{g, n}\right) \rightarrow 1
$$

$$
\Rightarrow \chi\left(\operatorname{MCG}\left(S_{g, n+1}\right)\right)=\chi\left(\mathcal{M}_{g, n+1}\right)=\chi\left(\pi_{1}\left(S_{g, n}\right)\right) \chi\left(\mathcal{M}_{g, n}\right)
$$

Step 1 of Kontsevich's proof

Generalize from \mathcal{M}_{g} to $\mathcal{M}_{g, n}$, the moduli space of surfaces of genus g and n punctures.
We can 'forget one puncture':

$$
\begin{aligned}
& 1 \rightarrow \pi_{1}\left(S_{g, n}\right) \rightarrow \operatorname{MCG}\left(S_{g, n+1}\right) \rightarrow \operatorname{MCG}\left(S_{g, n}\right) \rightarrow 1 \\
\Rightarrow & \chi\left(\operatorname{MCG}\left(S_{g, n+1}\right)\right)=\chi\left(\mathcal{M}_{g, n+1}\right)=\underbrace{\chi\left(\pi_{1}\left(S_{g, n}\right)\right)}_{=2-2 g-n} \chi\left(\mathcal{M}_{g, n}\right)
\end{aligned}
$$

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$
\Rightarrow Ribbon graphs Penner (1986)

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$
\Rightarrow Ribbon graphs Penner (1986)
Every point in $\mathcal{M}_{g, n}$ can be associated with a ribbon graph Γ such that
- Γ has n boundary components: $h_{0}(\partial \Gamma)=n$
- $\chi(\Gamma)=\left|V_{\Gamma}\right|-\left|E_{\Gamma}\right|=2-2 g-n$.

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$
\Rightarrow Ribbon graphs Penner (1986)
Every point in $\mathcal{M}_{g, n}$ can be associated with a ribbon graph 「 such that
- Γ has n boundary components: $h_{0}(\partial \Gamma)=n$
- $\chi(\Gamma)=\left|V_{\Gamma}\right|-\left|E_{\Gamma}\right|=2-2 g-n$.
\Rightarrow 「 can be interpreted as a surface of genus g with n punctures.

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$
\Rightarrow Ribbon graphs Penner (1986)
Every point in $\mathcal{M}_{g, n}$ can be associated with a ribbon graph「 such that
- Γ has n boundary components: $h_{0}(\partial \Gamma)=n$
- $\chi(\Gamma)=\left|V_{\Gamma}\right|-\left|E_{\Gamma}\right|=2-2 g-n$.
\Rightarrow 「 can be interpreted as a surface of genus g with n punctures.
$\Gamma=$

Step 3 of Kontsevich's proof

$$
\chi\left(\mathcal{M}_{g, n}\right)=\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|}
$$

Step 3 of Kontsevich's proof
dimension of resp.

$$
\chi\left(\mathcal{M}_{g, n}\right)=\sum_{\sigma^{\sigma}} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|}
$$ strata $=\left|U_{\Gamma}\right| \bmod 2$

Stabilizer under
sum over representatives of cells of $\mu_{g, n}$ action of MCG $=\mid$ Ant|
\sim ribbon graphs Γ

Step 3 of Kontsevich's proof

$$
\begin{aligned}
\chi\left(\mathcal{M}_{g, n}\right)= & \sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|} \\
= & \sum_{\substack{\Gamma \\
h_{0}(\partial \Gamma)=n\\
}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{|\operatorname{Aut} \Gamma|} \\
& \chi(\Gamma)=2-2 g-n
\end{aligned}
$$

Step 3 of Kontsevich's proof

$$
\begin{aligned}
\chi\left(\mathcal{M}_{g, n}\right)= & \sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|} \\
= & \sum_{\substack{\Gamma \\
h_{0}(\partial \Gamma)=n\\
}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{|\operatorname{Aut} \Gamma|}
\end{aligned}
$$

Used by Penner (1988) to calculate $\chi\left(\mathcal{M}_{g}\right)$ with Matrix models.

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}
$$

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\sum_{\substack{g, n \\ \text { ribbon graphs } \Gamma \\ h_{0}(\partial \Gamma)=n \\ \chi(\Gamma)=2-2 g-n}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{\mid \text { Aut } \Gamma \mid} \frac{1}{n!} z^{\chi(\Gamma)}
$$

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\begin{aligned}
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n} & =\sum_{g, n} \sum_{\substack{\text { ribbon graphs } \Gamma \\
h_{0}(\partial \Gamma)=n \\
\chi(\Gamma)=2-2 g-n}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{\mid \text { Aut } \Gamma \mid} \frac{1}{n!} z^{\chi(\Gamma)} \\
& =\sum_{\text {graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
\end{aligned}
$$

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\begin{aligned}
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n} & =\sum_{g, n \text { ribbon graphs } \Gamma} \sum_{\substack{h_{0}(\partial \Gamma)=n \\
\chi(\Gamma)=2-2 g-n}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{\mid \text { Aut } \Gamma \mid} \frac{1}{n!} z^{\chi(\Gamma)} \\
& =\sum_{\text {graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
\end{aligned}
$$

This is the perturbative series of a simple TFT:

$$
=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)} d x\right)
$$

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\begin{aligned}
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n} & =\sum_{g, n \text { ribbon graphs } \Gamma} \sum_{\substack{h_{0}(\partial \Gamma)=n \\
\chi(\Gamma)=2-2 g-n}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{\mid \text { Aut } \Gamma \mid} \frac{1}{n!} z^{\chi(\Gamma)} \\
& =\sum_{\text {graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
\end{aligned}
$$

This is the perturbative series of a simple TFT:

$$
=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)} d x\right)
$$

Evaluation is classic (Stirling/Euler-Maclaurin formulas)

$$
=\sum_{k \geq 1} \frac{\zeta(-k)}{-k} z^{-k}
$$

Last step of Kontsevich's proof

$$
\sum_{\substack{g, n \\ 2-2 g-n=k}} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!}=\frac{B_{k+1}}{k(k+1)}
$$

Last step of Kontsevich's proof

$$
\sum_{\substack{g, n \\ 2-2 g-n=k}} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!}=\frac{B_{k+1}}{k(k+1)}
$$

\Rightarrow recover Harer-Zagier formula using the identity

$$
\chi\left(\mathcal{M}_{g, n+1}\right)=(2-2 g-n) \chi\left(\mathcal{M}_{g, n}\right)
$$

Analogous proof strategy for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ using renormalized TFTs

Step 1

Generalize from $\operatorname{Out}\left(F_{n}\right)$ to $A_{n, s}$ and from \mathcal{O}_{n} to $\mathcal{O}_{n, s}$, Outer space of graphs of rank n and s legs.
Contant, Kassabov, Vogtmann (2011)

Step 1

Generalize from $\operatorname{Out}\left(F_{n}\right)$ to $A_{n, s}$ and from \mathcal{O}_{n} to $\mathcal{O}_{n, s}$, Outer space of graphs of rank n and s legs.
Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

$$
1 \rightarrow F_{n} \rightarrow A_{n, s} \rightarrow A_{n, s-1} \rightarrow 1
$$

$\in \theta_{3,2}$

Step 2

- Use a combinatorial model for $\mathcal{G}_{n, s}$

Step 2

- Use a combinatorial model for $\mathcal{G}_{n, s}$
\Rightarrow graphs with a forest Smillie-Vogtmann (1987):

Step 2

- Use a combinatorial model for $\mathcal{G}_{n, s}$
\Rightarrow graphs with a forest Smillie-Vogtmann (1987):
A point in $\mathcal{G}_{n, s}$ can be associated with a pair of a graph G and a forest $f \subset G$.

Step 2

- Use a combinatorial model for $\mathcal{G}_{n, s}$
\Rightarrow graphs with a forest Smillie-Vogtmann (1987):
A point in $\mathcal{G}_{n, s}$ can be associated with a pair of a graph G and a forest $f \subset G$.

$$
\operatorname{grap} \stackrel{(G, t)}{J} \uparrow \text { forast }
$$

Step 3

$$
\chi\left(A_{n, s}\right)=\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|}
$$

Step 3
dimension of resp.

$$
\chi\left(A_{n, s}\right)=\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|}
$$ strata

$$
=\left|E_{f}\right|
$$

Stabilizer under
sum over representatives of cells of $\theta_{n, s} / A_{n, s}$ action of $A_{n, s}$ $=\mid A u+G 1$
\sim legged graphs G

Step 3

$$
\begin{aligned}
\chi\left(A_{n, s}\right) & =\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|} \\
& =\sum_{\substack{\text { graphs } G \\
\text { with s legs } \\
\operatorname{rank}\left(\pi_{1}(G)\right)=n}} \sum_{\text {forests } f \subset G} \frac{(-1)^{\left|E_{f}\right|}}{\mid \text { Aut } G \mid}
\end{aligned}
$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with slegs } \\ \operatorname{rank}\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \sum_{\text {forests } f \subset G}(-1)^{\left|E_{f}\right|}
$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with s legs } \\ \operatorname{rank}\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \underbrace{\sum_{\text {forests } f \subset G}(-1)^{\left|E_{f}\right|}}_{=: \tau(G)}
$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with s legs } \\ \text { rank }\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \underbrace{}_{=: \tau(G)}(-1)^{\left|E_{f}\right|}
$$

τ fulfills the identities $\tau(\emptyset)=1$ and

$$
\sum_{\substack{g \subset G \\ g \text { bridgeless }}} \tau(g)(-1)^{\left|E_{G / g}\right|}=0 \quad \text { for all } G \neq \emptyset
$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with s legs } \\ \text { rank }\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \sum_{=: \tau(G)}(-1)^{\left|E_{f}\right|}
$$

τ fulfills the identities $\tau(\emptyset)=1$ and

$$
\sum \tau(g)(-1)^{\left|E_{G / g}\right|}=0 \quad \text { for all } G \neq \emptyset
$$

$\Rightarrow \tau$ is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with s legs } \\ \text { rank }\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \sum_{=: \tau(G)}(-1)^{\left|E_{f}\right|}
$$

τ fulfills the identities $\tau(\emptyset)=1$ and

$$
\sum \tau(g)(-1)^{\left|E_{G / g}\right|}=0 \quad \text { for all } G \neq \emptyset
$$

$\Rightarrow \tau$ is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)

The group invariants $\chi\left(A_{n, s}\right)$ are encoded in a renormalized TFT.

TFT evaluation

Let

$$
T(z, x)=\sum_{n, s \geq 0} \chi\left(A_{n, s}\right) z^{1-n} \frac{x^{s}}{s!}
$$

TFT evaluation

Let

$$
T(z, x)=\sum_{n, s \geq 0} \chi\left(A_{n, s}\right) z^{1-n} \frac{x^{s}}{s!}
$$

then

$$
1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{T(z, x)} d x
$$

TFT evaluation

Let

$$
\begin{aligned}
& T(z, x)=\sum_{n, s \geq 0} \chi\left(A_{n, s}\right) z^{1-n} \frac{x^{s}}{s!} \\
& 1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{T(z, x)} d x
\end{aligned}
$$

Using the short exact sequence, $1 \rightarrow F_{n} \rightarrow A_{n, s} \rightarrow A_{n, s-1} \rightarrow 1$ results in the action

$$
1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)+\frac{x}{2}+T\left(-z e^{x}\right)} d x
$$

where $T(z)=\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}$.

TFT evaluation

Let

$$
\begin{aligned}
& T(z, x)=\sum_{n, s \geq 0} \chi\left(A_{n, s}\right) z^{1-n} \frac{x^{s}}{s!} \\
& 1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{T(z, x)} d x
\end{aligned}
$$

Using the short exact sequence, $1 \rightarrow F_{n} \rightarrow A_{n, s} \rightarrow A_{n, s-1} \rightarrow 1$ results in the action

$$
1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)+\frac{x}{2}+T\left(-z e^{x}\right)} d x
$$

where $T(z)=\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}$.
This gives the implicit result in Theorem B.

Summery/Questions/Outlook

Short summary:

Summery/Questions/Outlook

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Summery/Questions/Outlook

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology. What generates it?

Summery/Questions/Outlook

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd

Summery/Questions/Outlook

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd
- Can the TFT analysis be explained with a duality between $\operatorname{MCG}\left(S_{g}\right)$ and $\operatorname{Out}\left(F_{n}\right)$? Obvious candidate: Koszul duality

Summery/Questions/Outlook

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd
- Can the TFT analysis be explained with a duality between $\operatorname{MCG}\left(S_{g}\right)$ and $\operatorname{Out}\left(F_{n}\right)$? Obvious candidate: Koszul duality
- Can renormalized TFT arguments also be used for other groups? For instance RAAGs.

