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Automorphisms of groups

e Take a group G
e An automorphism of G, p € Aut(G) is a bijection

p:G—G
such that p(x - y) = p(x) - p(y) for all x,y € G

e Normal subgroup: Inn(G) < Aut(G), the inner automorphisms.
e We have, pj € Inn(G)
on:G — G,
g +— h~lgh

for each h € G.
e Outer automorphisms: Out(G) = Aut(G)/ Inn(G)
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e The group Out(F,) is our main object of interest.



Some properties of Out(F,)

e Generated by

d] — aiar dy +— an a3 — ag

and a; — 31_1 ar — an as — as

and permutations of the letters.



e Generated by

d] — aiar dy +— an a3 — ag

and a; — 31_1 ar — an as — as

and permutations of the letters.

e The fundamental group of a graph is always a free group,
Out(F,) = Out(m1(IN))

for a connected graph [ with n independent cycles.

Some properties of Out(F,)
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Mapping class group

e Another example of an outer automorphism group:
the mapping class group

e The group of homeomorphisms of a closed, connected and
orientable surface S, of genus g up to isotopies

MCG(S;) := Out(m1(Sg))



Example: Mapping class group of the torus

MCG(T?) = Out(m(T?))

The group of homeomorphisms T? — T2 up to an isotopy:
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How to study groups such as MCG(S) or Out(F,)?

Realize G as symmetries of some geometric object.
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For the mapping class group: Teichmuller space

Let S be a closed, connected and orientable surface.
= A point in Teichmdiiller space T(S) is a pair, (X, u)

o A X.
e A marking: a nw:S— X.
_/-)
fA >
C J _J
R
X
S

MCG(S) on T(S) by composing to the marking:
(X, 1) — (X, pog 1) for some g € MCG(S).
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For Out(F,): Outer space

ldea: Mimic previous construction for Out(F,).
Culler, Vogtmann (1986)
Let R, be the rose with n petals.

R, =

= A point in Outer space O, is a pair, (G, i)
e A connected graph G with a length assigned to each edge.
e A marking: a homotopy 1 : R, — G.

—>
Out(F,) acts on O, by composing to the marking:

(T, 1) — (T, o g™t) for some g € Out(F,) = Out(m1(R,)).
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Examples of applications of Outer space

e The group Out(F,)

e Moduli spaces of punctured surfaces
e Tropical curves

e |nvariants of symplectic manifolds

e Classical modular forms

e (Mathematical) physics :

Scalar QFT ~ Integrals over O, / Out(F,)
analogous to

2D Quantum gravity ~ Integral overT(S)/ MCG(S)

10



Moduli spaces

e The quotient space G, := O, / Out(F,) is called the moduli

space of graphs.
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Moduli spaces

e The quotient space G, := O, / Out(F,) is called the moduli

space of graphs.

e Its cousin My = T(S;)/ MCG(S,) is the moduli space of
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Moduli spaces

e The quotient space G, := O, / Out(F,) is called the moduli
space of graphs.

e Its cousin My = T(S;)/ MCG(S,) is the moduli space of
curves.

e Both can be used to study the respective groups.

11



Summary of the respective groups and spaces

MCG(S;) Out(Fp)
acts freely and Teichmuller space Outer space
properly on T(Sg) On

Moduli space of curves | Moduli space of graphs

Quotient X/G
/ ./\/lg gn
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Algebraic invariants

° H.(OUt(Fn); Q) ~ Ho(On/OUt(Fn); @) = Ho(gn; Q)r
as O, is contractible Culler, Vogtmann (1986).
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Algebraic invariants

° H.(OUt(Fn); Q) ~ Ho(On/OUt(Fn); @) = Ho(gn; Q)r
as O, is contractible Culler, Vogtmann (1986).

= Study Out(F,) using G,

e One simple invariant: Euler characteristic
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Further motivation to look at Euler characteristic of Out(F,)

Consider the abelization map F, — Z".
= Induces a group homomorphism

1— Tp— Out(F,) — Out(Z") —1
N’
=GL(n,Z)

e 7, the ‘non-abelian’ part of Out(F,) is interesting.

e By the short exact sequence above

X(Out(F»)) = X(GL(n,2)) X(T )

= T, does not have finitely-generated homology if
x(Out(F,)) # 0.
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Results: y(Out(F,)) #0
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Theorem A MB-Vogtmann (2019)

x(Out(Fp,)) <0 for all n > 2

Z(Out(F,)) ~ — 1 I(n—3/2)

V2r  log®n

as n — o<Q.
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Theorem A MB-Vogtmann (2019)

x(Out(F,)) <0 forall n > 2

x(Out(F,)) ~ — \/127 r(';o;fn/ 2

as n — o<Q.

which settles the initial conjecture by
Smillie-Vogtmann (1987). Immediate questions:

= Huge amount of unstable homology in odd dimensions.
e Only one odd-dimensional class known Bartholdi (2016).

e Where does all this homology come from?
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This Theorem A follows from an implicit expression for

x(Out(Fp)):
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This Theorem A follows from an implicit expression for
x(Out(Fp)):
Theorem B MB-Vogtmann (2019)

Vore NNV ~ Y " a (~1)¥T(N +1/2 — k) as N — o0
k>0

where Z az’ = exp Zx(Out(FnH))z”

k>0 n>0

= x(Out(Fp)) are the coefficients of an asymptotic expansion.

e An analytic argument is needed to prove Theorem A from
Theorem B.

e In this talk: Focus on proof of Theorem B

17



Analogy to the mapping class group




Harer-Zagier formula for x(MCG(S,))

Similar result for the mapping class group/moduli space of curves:
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Harer-Zagier formula for x(MCG(S,))

Similar result for the mapping class group/moduli space of curves:

Bog
4g(g — 1)

X(Mg) = x(MCG(5g)) = g =2

e Original proof by Harer and Zagier in 1986.
e Alternative proof using topological field theory (TFT) by

e Simplified proof by based on TFT's.

=
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Sketch of Kontsevich’s TFT proof
of the Harer-Zagier formula




Step 1 of Kontsevich’s proof

Generalize from M, to Mg ,, the moduli space of surfaces of
genus g and n punctures.
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Step 1 of Kontsevich’s proof

Generalize from M, to Mg ,, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1 = m1(Sg,n) = MCG(S54,n41) = MCG(Sz,n) — 1

= X(MCG(Sg,n+1)) = X(Mg nt1) = zé(ﬁl(sg,n)) X(Mg,n)

7

=2—2g—n
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Step 2 of Kontsevich’s proof

e Use a combinatorial model for M, ,
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Step 2 of Kontsevich’s proof

e Use a combinatorial model for M, ,

= Ribbon graphs

Every point in M, , can be associated with a ribbon graph I' such
that

e [ has n boundary components: hy(0l') = n
o x(IN=[Vr|—|E&|=2-2g—n.

= [ can be interpreted as a surface of genus g with n punctures.

w, (N =1 y(r)=-1 91 wn=A 20



Step 3 of Kontsevich’s proof

( 1)d|m(0)
X(Mg.n) _Z Stab()]
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Step 3 of Kontsevich’s proof

A!aev-;)on »{. ruiﬁ.
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Step 3 of Kontsevich’s proof

r
ho(OIN)=n
x(FN)=2—-2g—n
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Step 3 of Kontsevich’s proof

( 1)d|m(a)
X(Mg.n) = Z | Stab(o

(_1)|Vr|
B zr: | Aut |
ho(OIN)=n
x(FN)=2—-2g—n

Used by Penner (1988) to calculate x(Mg) with Matrix models.
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Step 4 of Kontsevich’s proof

Kontsevich's simplification:

ZX 22gn
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Step 4 of Kontsevich’s proof

Kontsevich's simplification:

1)Ivrl 1
X 2 2g—n ( ) ()
2 =2 2 ThuT e
g,n ribbon graphs I
ho(OIN)=n
x(MN=2—-2g—n

3y (G INTS
graphs G i Aut Gi

This is the perturbative series of a simple TFT:

— log <\/217T—Z/ReZ(1+X_eX)dX)

Evaluation is classic (Stirling/Euler-Maclaurin formulas)

-yl

k>1
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Last step of Kontsevich’s proof

2—2g—n=k
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Last step of Kontsevich’s proof

X(Mg,n) o B
Z n! k(kkqtll)

&;n
2—2g—n=k

= recover Harer-Zagier formula using the identity

X(Mg.nt1) = (2 —2g — n)x(Mg,n)

23



Analogous proof strategy for
x(Out(F,)) using renormalized TFTs




Generalize from Out(Fj,) to Ans and from O, to O, 6, Outer
space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)
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Generalize from Out(F,) to A, s and from O, to O, s, Outer
space of graphs of rank n and s

Ag %1 Q;Y <%

Forgetting a leg gives the short exact sequence of groups

1= Fp—= Aps = Aps—1 — 1

&y - Feo,

24



e Use a combinatorial model for G, ¢
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Step 2

e Use a combinatorial model for G, ¢

= graphs with a forest Smillie-Vogtmann (1987):

A point in G, s can be associated with a pair of a graph G and a
forest f C G.

ﬂc(p

(G, 1)
SMPL' d K IOr-cﬂ"
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( 1)d|m(o)

Z | Stab(o
(—1)IE
- Z Z | Aut G|

graphs G forests fCG
with s legs

rank(m1(G))=n
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Renormalized TFT interpretation MB-Vogtmann (2019):

X(An,s) — Z ]AultG\ Z (—]_)’Ef|

graphs G forests fCG
with s legs
rank(71(G))=n
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Renormalized TFT interpretation MB-Vogtmann (2019):

X(An,s) — Z ]AultG\ Z (—]_)’Ef|

graphs G forests fCG
with s legs N ~~ =
rank(71(G))=n =:7(G)

7 fulfills the identities 7(0)) = 1 and

Z 7(g)(—1)/Ferel =0 for all G # ()

gCG
g bridgeless

= 7 is an inverse of a character in a Connes-Kreimer-type

renormalization Hopf algebra. Connes-Kreimer (2001)

The group invariants x(Aps) are encoded in a renormalized TFT.
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TFT evaluation

Let T(Z,X) — Z X(An,s)zl—n;
n,s>0 '
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TFT evaluation

X
Let T(z,x) =Y X(Ans)Z* o
n,s>0
1
then 1= /eT(Z’X)dX
\V2rmz JRr
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TFT evaluation

S

Let T(Z,X) — Z X(An,s)zl—nx_|
n,s>0 >
then I, = e T(2X) gy
\V2rmz JRr

Using the short exact sequence, 1 — F, = Aps — Aps—1 — 1
results in the action

1=

z(14+x— eX)—I— +T(— zex)d
V21z / x

where T(z) = >_,>1 x(Out(Fny1))z™".
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S

Let T(Z,X) — Z X(An,s)zl—nx_|
n,s>0 >
then I, = e T(2X) gy
\V2rmz JRr

Using the short exact sequence, 1 — F, = Aps — Aps—1 — 1

results in the action

1=

z(14+x— eX)—I— +T(— zex)d
V21z / x

where T(z) = Zn>1 X(Out(Fpy1))z™".

This gives the implicit result in Theorem B.
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e The rapid growth of x(Out(F,)) indicates that there is much
unstable homology. What generates it?

e Missing analysis of the naive integral Euler characteristic: tbd

e Can the TFT analysis be explained with a duality between
MCG(S;) and Out(F,)? Obvious candidate: Koszul duality

e Can renormalized TFT arguments also be used for other
groups? For instance RAAGs.
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