Generating Asymptotics for factorially divergent sequences

Michael Borinsky

Overview

This work is concerned with sequence which asymptotic expansion of the for

$$
a_{n}=\alpha^{n+\beta} \Gamma(n+\beta) \underbrace{\left(c_{0}+\frac{c_{1}}{\alpha(n+\beta-1}+\frac{c_{2}}{\alpha^{2}(n+\beta-1)(n+\beta-2)}+\cdots\right)}_{\text {idea: interpret coefficients } c_{k} \text { as another power series }},
$$

for large n and some $\alpha, \beta \in \mathbb{R}_{>0}$ and $c_{k} \in \mathbb{R}$.

- Sequences of this type appear in many enumeration problems, which deal with coefficients of factorial growth.
- Interpreted as formal power series, these objects carry a rich algebraic structure. They form a subring of $\mathbb{R}[[x]]$ which is closed under composition and inversion of power series.
- An 'asymptotic derivation' can be defined which maps a power series to its asymptotic expansion. - Using this formalism, the asymptotic expansions of implicitly defined power series can be obtained in closed form.

Definition

- For given $\alpha, \beta \in \mathbb{R}_{>0}$ let $\mathbb{R}[|x|]_{\beta}^{\alpha}$ be the subset of $\mathbb{R}[\mid x] \mid$, such that $f \in \mathbb{R}[\mid x]_{\beta}^{\alpha}$ if and only if there exists a sequence of real numbers $\left(c_{k}^{f}\right)_{k \in \mathbb{N}}$, which fulfills

```
fn= \mp@subsup{\sum}{k=0}{R-1}\mp@subsup{c}{k}{f}\mp@subsup{\alpha}{}{n+\beta-k}\Gamma(n+\beta-k)+\mathcal{O}(\mp@subsup{\alpha}{}{n}\Gamma(n+\beta-R))
```

- Let $\mathcal{A}_{\beta}^{\alpha}: \mathbb{R}\left[[x]_{\beta}^{\alpha} \rightarrow \mathbb{R}[[x]]^{\text {be the map }}\right.$

$$
\left(\mathcal{A}_{\beta}^{\alpha} f\right)(x)=\sum_{k=0}^{\infty} c_{k}^{f} x^{k} .
$$

There is a unique asymptotic expansion $\left(c_{k}^{f}\right)_{k \in \mathbb{N}_{0}}$ for every $f \in \mathbb{R}\left[[x]_{\beta}^{\alpha}\right.$, therefore $\mathcal{A}_{\beta}^{\alpha}$ is well-defined.

Statement of results

The subspace $\mathbb{R}\left[[x]_{\beta}^{\alpha}\right.$ is closed under addition, multiplication, composition and inversion.

- $\mathcal{A}_{\beta}^{\alpha}$ is a linear operator: With $f, g \in \mathbb{R}[[x]]_{\beta}^{\alpha}$
$\left(\mathcal{A}_{\beta}^{\alpha}(f+g)(x)=\left(\mathcal{A}_{\beta}^{\alpha} f\right)(x)+\left(\mathcal{A}_{\beta}^{\alpha} g\right)(x)\right.$.
- $\mathcal{A}_{\beta}^{\alpha}$ is a derivation: With $f, g \in \mathbb{R}[x x]_{\beta}^{\alpha}$ and $(f \cdot g)(x):=f(x) g(x$
$\left(\mathcal{A}_{\beta}^{\alpha}(f \cdot g)\right)(x)=f(x)\left(\mathcal{A}_{\beta}^{\alpha} g\right)(x)+g(x)\left(\mathcal{A}_{\beta}^{\alpha} f\right)(x)$.
- $\mathcal{A}_{\beta}^{\alpha}$ fulfills a chain rule: With $f, g \in \mathbb{R}[x x]_{\beta}^{\alpha}, g_{0}=0$ and $g_{1}=$

$$
\left(\mathcal{A}_{\beta}^{\alpha}(f \circ g)\right)(x)=f^{\prime}(g(x))\left(\mathcal{A}_{\beta}^{\alpha} g\right)(x)+\left(\frac{x}{g(x)}\right)^{\beta} e^{\frac{q(x)-x}{\alpha x(x)}}\left(\mathcal{A}_{\beta}^{\alpha} f\right)(g(x)) .
$$

\qquad

$$
\begin{equation*}
\left(\mathcal{A}_{\beta}^{\alpha} g^{-1}\right)(x)=-g^{-1^{\prime}}(x)\left(\frac{x}{g^{-1}(x)}\right)^{\beta} e^{\frac{g^{-1}(x)-x}{\alpha g^{-1}(x)}}\left(\mathcal{A}_{\beta}^{\alpha} g\right)\left(g^{-1}(x)\right) . \tag{}
\end{equation*}
$$

Application: Simple permutations

hy red squares by red square.

Setup
A permutation is called simple [1] if it does not map a non-trivial interval to another interval.

- A permutation $\pi \in S_{n}$ is simple if and only if
$\pi(i, j]) \neq[k, l]$ for all $i, j, k, l \in[1, n]$ with $2 \leq \mid i, j] \mid \leq n-1$
- Consider $F(x)=\sum_{n=1}^{\infty} n!x^{n}$, the generating function of all permutations and
- $S(x)=\sum_{n=4}^{\infty} S_{n} x^{n}$, the generating function of simple permutations.

The generating functions $F(x)$ and $S(x)$ are related [1],

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x)) .
$$

(6)

- This can be solved iteratively for the coefficients of $S(x)$

$$
S(x)=2 x^{4}+6 x^{5}+46 x^{6}+338 x^{7}+2926 x^{8}+
$$

Complete asymptotic expansion of S_{n}

1. We can extract the asymptotics systematically, because

$$
F(x)=\sum_{n=1}^{\infty} n!x^{n}=\sum_{n=1}^{\infty} 1^{n+1} \Gamma(n+1) x^{n} \in \mathbb{R}[x x]_{1}^{1} \Rightarrow\left(\mathcal{A}_{1}^{1} F\right)=1 .
$$

2. Apply the \mathcal{A}_{1}^{1}-derivative to both sides of eq. (6),

$$
\mathcal{A}_{1}^{1}\left(\frac{F(x)-F(x)^{2}}{1+F(x)}\right)=\mathcal{A}_{1}^{1}(x+S(F(x)))
$$

3. Use the product and chain rules in eqs. (2)-(4) to evaluate the asymptotic derivative,
$\frac{1-2 F(x)-F(x)^{2}}{(1+F(x))^{2}}\left(\mathcal{A}_{1}^{1} F\right)(x)=S^{\prime}(F(x))\left(\mathcal{A}_{1}^{1} F\right)(x)+\frac{x}{F(x)}{ }^{\frac{F(x)-x}{e x F(x)}}\left(\mathcal{A}_{1}^{1} S\right)(F(x))$,
4. Use eq. (6) and $\left(\mathcal{A}_{1}^{1} F\right)=1$ to simplify the result,

$$
\left(\mathcal{A}_{1}^{1} S\right)(x)=\frac{1}{1+x} \frac{1-x-(1+x) \frac{S(x)}{x}}{1+(1+x) \frac{S(x)}{x^{2}}} e^{-\frac{2+(1+x)}{1-x-1+x) \frac{S(x)}{x} \frac{S(x)}{x}}} .
$$

This function generates the coefficients of the asymptotic expansion of S_{n}. It can be expanded,

$$
\left(\mathcal{A}_{1}^{1} S\right)(x)=e^{-2}\left(1-4 x+2 x^{2}-\frac{40}{3} x^{3}-\frac{182}{3} x^{4}-\frac{7624}{15} x^{5}+\ldots\right)
$$

and translated into the asymptotic expansion of S_{n}. By eq. (1),

$$
S_{n}=e^{-2}\left(n!-4(n-1)!+2(n-2)!-\frac{40}{3}(n-3)!-\frac{182}{3}(n-4)!-\frac{7624}{15}(n-5)!+\ldots\right) .
$$

Albert, Atkinson and Klazar [1] obtained the first three terms of this expansion using different tech-
niques. niques.

Application: Connected chord diagrams

12345678

b: connected chord diagram
Figure e: Examples of connected and disconnected chord diagrams. The red rectangles indicate the connected comporns

Setup

- A chord diagram with n-chords is a set of $2 n$ points, which are labeled by integes
connected in disjoint pairs by n-chords. There are $(2 n-1)$!! of such diagrams.
- A chord diagram is connected if no set of chords can be separated from the remaining chords by
line which does not cross any chords.
- Let $I(x)=\sum_{n=0}(2 n-1)!!x^{n}$, the generating function of all chord diagrams with n chords
- and $C(x)=\sum_{n=0} C_{n} x^{n}$, the generating function of connected chord diagrams with n chords.
- The power series $I(x)$ and $C(x)$ are related [5],

$$
I(x)=1+C\left(x I(x)^{2}\right) .
$$

- This can be solved iteratively for the coefficients of $C(x)$:

$$
C(x)=x+x^{2}+4 x^{3}+27 x^{4}+248 x^{5}+
$$

Complete asymptotic expansion of C_{n}

1. Recall that $(2 n-1)!!=\frac{2^{n+\frac{1}{2}}}{\sqrt{2 \pi}} \Gamma\left(n+\frac{1}{2}\right)$, therefore

$$
I(x)=\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{\infty} 2^{n+\frac{1}{2}} \Gamma\left(n+\frac{1}{2}\right) x^{n} \in \mathbb{R}[x x]_{\frac{1}{2}}^{2} \Rightarrow\left(\mathcal{A}_{\frac{1}{2}}^{2} I\right)(x)=\frac{1}{\sqrt{2 \pi}} .
$$

2. Analogously to the middle column: Apply \mathcal{A}_{1}^{2} to both sides of eq. (7) and simplify to obtain the generating function of the asymptotic expansio

$$
\left(\mathcal{A}_{\frac{1}{2}}^{2} C\right)(x)=\frac{1}{\sqrt{2 \pi}} \frac{x}{C(x)} e^{-\frac{1}{2 x}\left(2 C(x)+C(x)^{2}\right)} .
$$

This generating function can be expanded to obtain the asymptotic expansion of C_{n} explicitly:

$$
C_{n}=e^{-1}\left((2 n-1)!!-\frac{5}{2}(2 n-3)!!-\frac{43}{8}(2 n-5)!!-\frac{579}{16}(2 n-7)!!-\frac{44477}{128}(2 n-9)!!+\ldots\right) .
$$

The first coefficient of this expansion was previously calculated by Stein and Everett [6].
Key references
[1] MH Albert, MD A
6(4):Art-03, 2003 .
[2] EA Bender. An asymptotic expansio
matical Society, $2(3): 451-458,1975$
${ }^{\text {B3 }}$.3] EA Bender and LB Richmond. An asymptotic
arich divergent sequences. arXiv preprint arXiv:1003.01236, 2016.
pages 191-201. Springer, 2000
$\left.{ }^{[16}\right)$ PR Stein and CJ Everett. On a class of linked diagrams II. asymptotics. Discrete Mathematics, 21(3):309-318, 1978.

