Graphs in perturbation theory: Algebraic structure and asymptotics

Michael Borinsky
Humboldt-University Berlin
Departments of Physics and Mathematics

Summer school on structures in local quantum field theory
Les Houches
6th June 2018

Motivation

Motivation

Bender and Wu [1969], Lipatov [1977], Brezin, Le Guillou, and Zinn-Justin [1977]

Motivation

Bender and Wu [1969], Lipatov [1977], Brezin, Le Guillou, and Zinn-Justin [1977]

Motivation

Bender and Wu [1969], Lipatov [1977], Brezin, Le Guillou, and Zinn-Justin [1977]

Motivation

Bender and Wu [1969], Lipatov [1977], Brezin, Le Guillou, and Zinn-Justin [1977]

Large f_{n} inaccessible \Leftrightarrow Large α inaccessible

An algebraic combinatorial study

An algebraic combinatorial study

1. Perturbative QFT

Algebra of graphs

An algebraic combinatorial study

Feynman [1949] Organize perturbation expansion in terms of graphs.

1. Perturbative QFT

Algebra of graphs

Feynman [1949] Organize perturbation expansion in terms of graphs.

1. Perturbative QFT

Algebra of graphs

■ Each graph represents an integral.

Feynman [1949] Organize perturbation expansion in terms of graphs.

1. Perturbative QFT

Algebra of graphs

■ Each graph represents an integral.
\Rightarrow Use an algebra to represent graphs.

Feynman [1949] Organize perturbation expansion in terms of graphs.

■ Each graph represents an integral.
\Rightarrow Use an algebra to represent graphs.

- Encode Feynman rules as algebra homomorphisms.

Algebra homomorphisms of graphs

The algebra of graphs:

$$
\mathcal{G}:=\langle\{\omega, \otimes, \infty, \infty-\infty, 0-\infty, \infty, \ldots\}\rangle
$$

Algebra homomorphisms of graphs

The algebra of graphs:

$$
\mathcal{G}:=\langle\{0-0, \Theta, \infty,\}-\infty, \infty-0, \theta, \ldots\}\rangle
$$

■ Feynman rules are algebra homomorphisms $\phi: \mathcal{G} \rightarrow \mathbb{A}$.

■ In zero-dimensional QFT:

$$
\phi_{\boldsymbol{\lambda}}: \Gamma \mapsto \hbar^{\# \text { edges-\#vertices }} \prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}
$$

where $d_{\Gamma}^{(v)}$ is the degree of the vertex v in Γ and the λ_{k} control the allowed degrees of the vertices.

■ In zero-dimensional QFT:

$$
\phi_{\boldsymbol{\lambda}}: \Gamma \mapsto \hbar^{\# \text { edges-\#vertices }} \prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}
$$

where $d_{\Gamma}^{(v)}$ is the degree of the vertex v in Γ and the λ_{k} control the allowed degrees of the vertices.
■ Explicit access to unrenormalized quantities by path integral:

$$
\begin{aligned}
Z_{\boldsymbol{\lambda}}(\hbar) & :=\phi_{\boldsymbol{\lambda}}\left(\sum_{\text {graphs } \Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}\right)=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+\sum_{k \geq 3} \lambda_{k} \frac{x^{k}}{k!}\right)} \\
& =\phi_{\boldsymbol{\lambda}}\left(\mathbb{1}+\frac{1}{8} \bigcirc \bigcirc+\frac{1}{12} \bigcirc+\frac{1}{8} \bigcirc+\frac{1}{128} \bigcirc \bigcirc+\ldots\right) \\
& =1+\left(\left(\frac{1}{8}+\frac{1}{12}\right) \lambda_{3}^{2}+\frac{1}{8} \lambda_{4}\right) \hbar+\ldots
\end{aligned}
$$

Hurst [1952], Cvitanović, Lautrup, and Pearson [1978]
Argyres, van Hameren, Kleiss, and Papadopoulos [2001]

■ Interpret observables as perturbation expansions

$$
\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+\sum_{k \geq 3} \lambda_{k} \frac{x^{k}}{k!}\right)}=\sum_{n=0}^{\infty} z_{n}(\boldsymbol{\lambda}) \hbar^{n}
$$

■ Interpret observables as perturbation expansions

$$
\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+\sum_{k \geq 3} \lambda_{k} \frac{x^{k}}{k!}\right)}=\sum_{n=0}^{\infty} z_{n}(\boldsymbol{\lambda}) \hbar^{n}
$$

■ The coefficients $z_{n}(\boldsymbol{\lambda})$ count graphs of excess n with degree distribution encoded in $\boldsymbol{\lambda}$.

■ The large n asymptotics of $z_{n}(\boldsymbol{\lambda})$ are accessible
Theorem мв [2017]
$z_{n}(\boldsymbol{\lambda}) \underset{n \rightarrow \infty}{=} A^{-n} \Gamma(n)\left(c_{0}(\boldsymbol{\lambda})+c_{1}(\boldsymbol{\lambda}) \frac{A}{n-1}+c_{2}(\boldsymbol{\lambda}) \frac{A^{2}}{(n-1)(n-2)}+\ldots\right)$
where with $\mathcal{S}(x)=-\frac{x^{2}}{2}+\sum_{k \geq 0} \lambda_{k} \frac{x^{k}}{k!}$

$$
\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{-\frac{1}{\hbar}(\mathcal{S}(x+\tau)-\mathcal{S}(\tau))}=\sum_{m=0}^{\infty} c_{m}(\boldsymbol{\lambda})(-\hbar)^{m}
$$

and (τ, A) are the coordinates of the dominant saddle point of $\mathcal{S}(x)$, which can be obtained by analysis of the hyperelliptic curve $-\frac{y^{2}}{2}=\mathcal{S}(x)$.

■ The large n asymptotics of $z_{n}(\boldsymbol{\lambda})$ are accessible

Theorem мв [2017]

$$
z_{n}(\boldsymbol{\lambda}) \underset{n \rightarrow \infty}{=} A^{-n} \Gamma(n)\left(c_{0}(\boldsymbol{\lambda})+c_{1}(\boldsymbol{\lambda}) \frac{A}{n-1}+c_{2}(\boldsymbol{\lambda}) \frac{A^{2}}{(n-1)(n-2)}+\ldots\right)
$$

where with $\mathcal{S}(x)=-\frac{x^{2}}{2}+\sum_{k \geq 0} \lambda_{k} \frac{x^{k}}{k!}$

$$
\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{-\frac{1}{\hbar}(\mathcal{S}(x+\tau)-\mathcal{S}(\tau))}=\sum_{m=0}^{\infty} c_{m}(\boldsymbol{\lambda})(-\hbar)^{m}
$$

and (τ, A) are the coordinates of the dominant saddle point of $\mathcal{S}(x)$, which can be obtained by analysis of the hyperelliptic curve $-\frac{y^{2}}{2}=\mathcal{S}(x)$.

- $c_{m}(\boldsymbol{\lambda})=z_{m}\left(\boldsymbol{\lambda}^{\prime}\right)$ - the asymptotic expansion enumerates graphs with a modified degree distribution.

■ The large n asymptotics of $z_{n}(\boldsymbol{\lambda})$ are accessible

Theorem мв [2017]

$$
z_{n}(\boldsymbol{\lambda}) \underset{n \rightarrow \infty}{=} A^{-n} \Gamma(n)\left(c_{0}(\boldsymbol{\lambda})+c_{1}(\boldsymbol{\lambda}) \frac{A}{n-1}+c_{2}(\boldsymbol{\lambda}) \frac{A^{2}}{(n-1)(n-2)}+\ldots\right)
$$

where with $\mathcal{S}(x)=-\frac{x^{2}}{2}+\sum_{k \geq 0} \lambda_{k} \frac{x^{k}}{k!}$

$$
\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{-\frac{1}{\hbar}(\mathcal{S}(x+\tau)-\mathcal{S}(\tau))}=\sum_{m=0}^{\infty} c_{m}(\boldsymbol{\lambda})(-\hbar)^{m}
$$

and (τ, A) are the coordinates of the dominant saddle point of $\mathcal{S}(x)$, which can be obtained by analysis of the hyperelliptic curve $-\frac{y^{2}}{2}=\mathcal{S}(x)$.

- $c_{m}(\boldsymbol{\lambda})=z_{m}\left(\boldsymbol{\lambda}^{\prime}\right)$ - the asymptotic expansion enumerates graphs with a modified degree distribution.
- This is a generalization of a result of Bașar, Dunne, and Ünsal [2013] and a resurgence phenomenon.

Figure: Example: The curve $\frac{y^{2}}{2}=\frac{x^{2}}{2}-\frac{x^{3}}{3!}$ associated to $Z^{\varphi^{3}}$.

Figure: Example: The curve $\frac{y^{2}}{2}=\frac{x^{2}}{2}-\frac{x^{3}}{3!}$ associated to $Z^{\varphi^{3}}$.
$\Rightarrow x(y)$ has a (dominant) branch-cut singularity at $y=\rho=\frac{2}{\sqrt{3}}$, where $x(\rho)=\tau=2$.

Example

- For cubic graphs or equivalently φ^{3} theory, we are interested in the action $-\frac{x^{2}}{2}+\frac{x^{3}}{3!}$, therefore $\lambda_{3}=1$ and $\lambda_{k}=0$ for all $k \neq 3$,

Example

- For cubic graphs or equivalently φ^{3} theory, we are interested in the action $-\frac{x^{2}}{2}+\frac{x^{3}}{3!}$, therefore $\lambda_{3}=1$ and $\lambda_{k}=0$ for all $k \neq 3$,

$$
\begin{gathered}
\phi_{\lambda_{3}}\left(1+\frac{1}{8} \bigcirc-\frac{1}{12} \odot+\frac{1}{128} \bigcirc+\ldots\right) \\
1+\frac{5}{24} \hbar+\frac{385}{1152} \hbar^{2}+\frac{85085}{82944} \hbar^{3}+\cdots
\end{gathered}
$$

Example

- For cubic graphs or equivalently φ^{3} theory, we are interested in the action $-\frac{x^{2}}{2}+\frac{x^{3}}{3!}$, therefore $\lambda_{3}=1$ and $\lambda_{k}=0$ for all $k \neq 3$,

$$
\begin{gathered}
\phi_{\lambda_{3}}\left(1+\frac{1}{8} \bigcirc-\frac{1}{12} \bigcirc+\frac{1}{128} \bigcirc-O_{0}+\ldots\right) \\
1+\frac{5}{24} \hbar+\frac{385}{1152} \hbar^{2}+\frac{85085}{82944} \hbar^{3}+\cdots
\end{gathered}
$$

■ We find $\tau=2, A=\frac{2}{3}$ and the coefficients of the asymptotic expansion

$$
\begin{gathered}
\sum_{k=0}^{\infty} c_{k}(-\hbar)^{k}=\frac{1}{2 \pi} \phi_{\lambda_{3}^{\prime}}\left(\sum_{\Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}\right)=\frac{1}{2 \pi} \phi_{\lambda_{3}}\left(\sum_{\Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}\right) \\
=\frac{1}{2 \pi}\left(1+\frac{5}{24} \hbar+\frac{385}{1152} \hbar^{2}+\frac{85085}{82944} \hbar^{3}+\ldots\right)
\end{gathered}
$$

Example

- For cubic graphs or equivalently φ^{3} theory, we are interested in the action $-\frac{x^{2}}{2}+\frac{x^{3}}{3!}$, therefore $\lambda_{3}=1$ and $\lambda_{k}=0$ for all $k \neq 3$,

$$
\begin{gathered}
\phi_{\lambda_{3}}\left(1+\frac{1}{8} \bigcirc-\frac{1}{12} \bigcirc+\frac{1}{128} \bigcirc-O_{0}+\ldots\right) \\
1+\frac{5}{24} \hbar+\frac{385}{1152} \hbar^{2}+\frac{85085}{82944} \hbar^{3}+\cdots
\end{gathered}
$$

■ We find $\tau=2, A=\frac{2}{3}$ and the coefficients of the asymptotic expansion

$$
\begin{gathered}
\sum_{k=0}^{\infty} c_{k}(-\hbar)^{k}=\frac{1}{2 \pi} \phi_{\lambda_{3}^{\prime}}\left(\sum_{\Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}\right)=\frac{1}{2 \pi} \phi_{\lambda_{3}}\left(\sum_{\Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}\right) \\
=\frac{1}{2 \pi}\left(1+\frac{5}{24} \hbar+\frac{385}{1152} \hbar^{2}+\frac{85085}{82944} \hbar^{3}+\ldots\right)
\end{gathered}
$$

\Rightarrow The asymptotic expansion is $\left[\hbar^{n}\right] \mathcal{F}[\mathcal{S}(x)](\hbar)=$ $\sum_{k=0}^{R-1} c_{k} A^{-n+k} \Gamma(n-k)+\mathcal{O}\left(A^{-n+R} \Gamma(n-R)\right)$.

- The large n asymptotics of $z_{n}(\boldsymbol{\lambda})$ are accessible

Theorem mв [2017]

$$
z_{n}(\boldsymbol{\lambda}) \underset{n \rightarrow \infty}{=} A^{-n} \Gamma(n)\left(c_{0}(\boldsymbol{\lambda})+c_{1}(\boldsymbol{\lambda}) \frac{A}{n-1}+c_{2}(\boldsymbol{\lambda}) \frac{A^{2}}{(n-1)(n-2)}+\ldots\right)
$$

where with $\mathcal{S}(x)=-\frac{x^{2}}{2}+\sum_{k \geq 0} \lambda_{k} \frac{x^{k}}{k!}$

$$
\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{-\frac{1}{\hbar}(\mathcal{S}(x+\tau)-\mathcal{S}(\tau))}=\sum_{m=0}^{\infty} c_{m}(\boldsymbol{\lambda})(-\hbar)^{m}
$$

and (τ, A) are the coordinates of the dominant saddle point of $\mathcal{S}(x)$, which can be obtained by analysis of the hyperelliptic curve $-\frac{y^{2}}{2}=\mathcal{S}(x)$.

- $c_{m}(\boldsymbol{\lambda})=z_{m}\left(\boldsymbol{\lambda}^{\prime}\right)$ - the asymptotic expansion enumerates graphs with a modified degree distribution.

2. Non-perturbative aspects

Ring of factorially divergent power series

- Interest in composite quantities, e.g.

$$
\log \left(Z_{\lambda}(\hbar)\right)
$$

2. Non-perturbative aspects

Ring of factorially divergent power series
for connected graphs or the free energy of the QFT.

- Interest in composite quantities, e.g.

$$
\log \left(Z_{\lambda}(\hbar)\right)
$$

2. Non-perturbative aspects

Ring of factorially divergent power series
for connected graphs or the free energy of the QFT.

- Asymptotic expansions can be extracted using the ring of factorially divergent power series мв [2016]].
- Interest in composite quantities, e.g.

$$
\log \left(Z_{\lambda}(\hbar)\right)
$$

2. Non-perturbative aspects

Ring of factorially divergent power series
for connected graphs or the free energy of the QFT.

- Asymptotic expansions can be extracted using the ring of factorially divergent power series mв [2016]].
- Powerseries version of alien calculus [Écalle, 1981].

Structure of factorially divergent power series

- Power series $\sum_{n \geq 0} f_{n} x^{n}$, which admit an asymptotic expansion

$$
f_{n} \underset{n \rightarrow \infty}{=} A^{-n} \Gamma(n)\left(c_{0}+c_{1} \frac{A}{n-1}+c_{2} \frac{A^{2}}{(n-1)(n-2)}+\ldots\right),
$$

form a subring $\mathbb{R}[[x]]^{A}$ of $\mathbb{R}[[x]]$, which is closed under composition and inversion of power series.

Structure of factorially divergent power series

- Power series $\sum_{n \geq 0} f_{n} x^{n}$, which admit an asymptotic expansion

$$
f_{n} \underset{n \rightarrow \infty}{=} A^{-n} \Gamma(n)\left(c_{0}+c_{1} \frac{A}{n-1}+c_{2} \frac{A^{2}}{(n-1)(n-2)}+\ldots\right),
$$

form a subring $\mathbb{R}[[x]]^{A}$ of $\mathbb{R}[[x]]$, which is closed under composition and inversion of power series.

- First step: Interpret the coefficients c_{k} as a new power series.

Structure of factorially divergent power series

- Power series $\sum_{n \geq 0} f_{n} x^{n}$, which admit an asymptotic expansion

$$
f_{n} \underset{n \rightarrow \infty}{=} A^{-n} \Gamma(n)\left(c_{0}+c_{1} \frac{A}{n-1}+c_{2} \frac{A^{2}}{(n-1)(n-2)}+\ldots\right),
$$

form a subring $\mathbb{R}[[x]]^{A}$ of $\mathbb{R}[[x]]$, which is closed under composition and inversion of power series.

- First step: Interpret the coefficients c_{k} as a new power series.
- Second step: Define an operator on $\mathbb{R}[[x]]^{A}$:

- \mathcal{A} is a derivation on $\mathbb{R}[[x]]^{A}$:

Theorem mB [2016]

$$
(\mathcal{A} f \cdot g)(x)=f(x)(\mathcal{A} g)(x)+(\mathcal{A} f)(x) g(x)
$$

- \mathcal{A} is a derivation on $\mathbb{R}[[x]]^{A}$:

Theorem mB [2016]

$$
(\mathcal{A} f \cdot g)(x)=f(x)(\mathcal{A} g)(x)+(\mathcal{A} f)(x) g(x)
$$

$\Rightarrow \mathbb{R}[[x]]^{A}$ is a subring of $\mathbb{R}[[x]]$.

- \mathcal{A} is a derivation on $\mathbb{R}[[x]]^{A}$:

Theorem mв [2016]

$$
(\mathcal{A} f \cdot g)(x)=f(x)(\mathcal{A} g)(x)+(\mathcal{A} f)(x) g(x)
$$

$\Rightarrow \mathbb{R}[[x]]^{A}$ is a subring of $\mathbb{R}[[x]]$.

Proof sketch

With $h(x)=f(x) g(x)$,

$$
h_{n}=\underbrace{\sum_{k=0}^{R-1} f_{n-k} g_{k}+\sum_{k=0}^{R-1} f_{k} g_{n-k}}_{\text {High order times low order }}+\underbrace{\sum_{k=R}^{n-R} f_{k} g_{n-k}}_{\mathcal{O}\left(A^{-n} \Gamma(n-R)\right)}
$$

- \mathcal{A} is a derivation on $\mathbb{R}[[x]]^{A}$:

Theorem MB [2016]

$$
(\mathcal{A} f \cdot g)(x)=f(x)(\mathcal{A} g)(x)+(\mathcal{A} f)(x) g(x)
$$

$\Rightarrow \mathbb{R}[[x]]^{A}$ is a subring of $\mathbb{R}[[x]]$.

Proof sketch

With $h(x)=f(x) g(x)$,

$$
h_{n}=\underbrace{\sum_{k=0}^{R-1} f_{n-k} g_{k}+\sum_{k=0}^{R-1} f_{k} g_{n-k}}_{\text {High order times low order }}+\underbrace{\sum_{k=R}^{n-R} f_{k} g_{n-k}}_{\mathcal{O}\left(A^{-n} \Gamma(n-R)\right)} .
$$

- $\sum_{k=R}^{n-R} f_{k} g_{n-k} \in \mathcal{O}\left(A^{-n} \Gamma(n-R)\right)$ follows from the log-convexity of the Γ function.

■ What happens for composition of power series $\in \mathbb{R}[[x]]^{A}$?

■ What happens for composition of power series $\in \mathbb{R}[[x]]^{A}$?

Theorem Bender [1975]

If $\left|f_{n}\right| \leq C^{n}$ then, for $g \in \mathbb{R}[[x]]^{A}$ with $g_{0}=0$:

$$
\begin{gathered}
f \circ g \in \mathbb{R}[[x]]^{A} \\
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)
\end{gathered}
$$

■ What happens for composition of power series $\in \mathbb{R}[[x]]^{A}$?

Theorem Bender [1975]

If $\left|f_{n}\right| \leq C^{n}$ then, for $g \in \mathbb{R}[[x]]^{A}$ with $g_{0}=0$:

$$
\begin{gathered}
f \circ g \in \mathbb{R}[[x]]^{A} \\
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)
\end{gathered}
$$

- Bender considered more general power series, but this is a direct corollary of his theorem in 1975.

Example

A reducible permutation:

An irreducible permutation:

- A permutation π of $[n]=\{1, \ldots, n\}$ is called irreducible if there is no $m<n$ such that $\pi([m])=[m]$.

Example

A reducible permutation:

An irreducible permutation:

- A permutation π of $[n]=\{1, \ldots, n\}$ is called irreducible if there is no $m<n$ such that $\pi([m])=[m]$.
- Set $F(x)=\sum_{n=1}^{\infty} n!x^{n}$ - the OGF of all permutations.

Example

A reducible permutation:

An irreducible permutation:

- A permutation π of $[n]=\{1, \ldots, n\}$ is called irreducible if there is no $m<n$ such that $\pi([m])=[m]$.
- Set $F(x)=\sum_{n=1}^{\infty} n!x^{n}$ - the OGF of all permutations.
- The OGF of irreducible permutations I fulfills

$$
I(x)=1-\frac{1}{1+F(x)}
$$

$$
I(x)=1-\frac{1}{1+F(x)} \quad F(x)=\sum_{n=1}^{\infty} n!x^{n}
$$

$$
I(x)=1-\frac{1}{1+F(x)} \quad F(x)=\sum_{n=1}^{\infty} n!x^{n} .
$$

■ By definition: $F \in \mathbb{R}[[x]]^{1}$ and $(\mathcal{A} F)(x)=\frac{1}{x}$.

$$
I(x)=1-\frac{1}{1+F(x)} \quad F(x)=\sum_{n=1}^{\infty} n!x^{n}
$$

- By definition: $F \in \mathbb{R}[[x]]^{1}$ and $(\mathcal{A} F)(x)=\frac{1}{x}$.
- $\frac{1}{1+x}$ is analytic at the origin, therefore by the chain rule

$$
(\mathcal{A} /)(x)=\left(\mathcal{A}\left(1-\frac{1}{1+F(x)}\right)\right)(x)=\frac{1}{x} \frac{1}{(1+F(x))^{2}}
$$

$$
I(x)=1-\frac{1}{1+F(x)} \quad F(x)=\sum_{n=1}^{\infty} n!x^{n}
$$

- By definition: $F \in \mathbb{R}[[x]]^{1}$ and $(\mathcal{A} F)(x)=\frac{1}{x}$.
- $\frac{1}{1+x}$ is analytic at the origin, therefore by the chain rule

$$
(\mathcal{A} I)(x)=\left(\mathcal{A}\left(1-\frac{1}{1+F(x)}\right)\right)(x)=\frac{1}{x} \frac{1}{(1+F(x))^{2}}
$$

Theorem Comtet [1972]

Therefore the asymptotic expansion of the coefficients of $I(x)$ is

$$
\left[x^{n}\right] I(x)=\sum_{k=0}^{R-1} c_{k}(n-k)!+\mathcal{O}((n-R)!) \quad \forall R \in \mathbb{N}_{0}
$$

where $c_{k}=\left[x^{k}\right] \frac{1}{(1+F(x))^{2}}$.

This chain rule can easily be generalized to multivalued analytic functions:

Theorem MB [2016a]

More general: For $f \in \mathbb{R}\left\{y_{1}, \ldots, y_{L}\right\}$ and $g^{1}, \ldots, g^{L} \in x \mathbb{R}[[x]]^{A}$:

$$
\left(\mathcal{A}\left(f\left(g^{1}, \ldots, g^{L}\right)\right)(x)=\sum_{l=1}^{L} \frac{\partial f}{\partial g^{\prime}}\left(g^{1}, \ldots, g^{L}\right)\left(\mathcal{A} g^{\prime}\right)(x)\right.
$$

- What happens if f is not an analytic function?
- What happens if f is not an analytic function?
- \mathcal{A} fulfills a general 'chain rule':
- What happens if f is not an analytic function?
- \mathcal{A} fulfills a general 'chain rule':

Theorem MB [2016a]

If $f, g \in \mathbb{R}[[x]]^{A}$ with $g_{0}=0$ and $g_{1}=1$, then $f \circ g \in \mathbb{R}[[x]]^{A}$ and

$$
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)+e^{A \frac{g(x)-x}{x_{g}(x)}}(\mathcal{A} f)(g(x))
$$

- What happens if f is not an analytic function?
- \mathcal{A} fulfills a general 'chain rule':

Theorem MB [2016a]

If $f, g \in \mathbb{R}[[x]]^{A}$ with $g_{0}=0$ and $g_{1}=1$, then $f \circ g \in \mathbb{R}[[x]]^{A}$ and

$$
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)+e^{A \frac{g(x)-x}{x_{g}(x)}}(\mathcal{A} f)(g(x))
$$

$\Rightarrow \mathbb{R}[[x]]^{A}$ is closed under composition and inversion.

- What happens if f is not an analytic function?
- \mathcal{A} fulfills a general 'chain rule':

Theorem MB [2016a]

If $f, g \in \mathbb{R}[[x]]^{A}$ with $g_{0}=0$ and $g_{1}=1$, then $f \circ g \in \mathbb{R}[[x]]^{A}$ and

$$
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)+e^{A \frac{g(x)-x}{x_{g}(x)}}(\mathcal{A} f)(g(x))
$$

$\Rightarrow \mathbb{R}[[x]]^{A}$ is closed under composition and inversion.
\Rightarrow We can solve for asymptotics of implicitly defined power series.

Example: Simple permutations

A non-simple permutation:

A simple permutation:

- A permutation π of $[n]=\{1, \ldots, n\}$ is called simple if there is no (non-trivial) interval $[i, j]=\{i, \ldots, j\}$ such that $\pi([i, j])$ is another interval. ('Rooted dinner party permutations')

Example: Simple permutations

A non-simple permutation:

A simple permutation:

- A permutation π of $[n]=\{1, \ldots, n\}$ is called simple if there is no (non-trivial) interval $[i, j]=\{i, \ldots, j\}$ such that $\pi([i, j])$ is another interval. ('Rooted dinner party permutations')
- The OGF $S(x)$ of simple permutations fulfills

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x))
$$

with $F(x)=\sum_{n=1}^{\infty} n!x^{n}$ [Albert, Klazar, and Atkinson, 2003].

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x))
$$

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x))
$$

- By definition: $F \in \mathbb{R}[[x]]^{1}$ and $(\mathcal{A} F)(x)=\frac{1}{x}$.

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x))
$$

■ By definition: $F \in \mathbb{R}[[x]]^{1}$ and $(\mathcal{A} F)(x)=\frac{1}{x}$.

- Extract asymptotics by applying the \mathcal{A}-derivative:

$$
\mathcal{A}\left(\frac{F(x)-F(x)^{2}}{1+F(x)}\right)=\mathcal{A}(x+S(F(x)))
$$

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x))
$$

- By definition: $F \in \mathbb{R}[[x]]^{1}$ and $(\mathcal{A} F)(x)=\frac{1}{x}$.
- Extract asymptotics by applying the \mathcal{A}-derivative:

$$
\mathcal{A}\left(\frac{F(x)-F(x)^{2}}{1+F(x)}\right)=\mathcal{A}(x+S(F(x)))
$$

- Apply chain rule on both sides

$$
\begin{aligned}
\frac{1-2 F(x)-F(x)^{2}}{(1+F(x))^{2}}(\mathcal{A} F)(x) & =S^{\prime}(F(x))(\mathcal{A} F)(x) \\
& +\left(\frac{x}{F(x)}\right)^{1} e^{\frac{F(x)-x}{x F(x)}}(\mathcal{A} S)(F(x))
\end{aligned}
$$

which can be solved for $(\mathcal{A} S)(x)$.

- After simplifications:

$$
(\mathcal{A} S)(x)=\frac{1}{x} \frac{1}{1+x} \frac{1-x-(1+x) \frac{S(x)}{x}}{1+(1+x) \frac{S(x)}{x^{2}}} e^{-\frac{2+(1+x) \frac{S(x)}{x^{2}}}{1-x-(1+x) \frac{S(x)}{x}}}
$$

- After simplifications:

$$
(\mathcal{A} S)(x)=\frac{1}{x} \frac{1}{1+x} \frac{1-x-(1+x) \frac{S(x)}{x}}{1+(1+x) \frac{S(x)}{x^{2}}} e^{-\frac{2+(1+x) \frac{S(x)}{x^{2}}}{1-x-(1+x) \frac{S(x)}{x}}}
$$

- We get the full asymptotic expansion for S :

$$
\left[x^{n}\right] S(x)=\sum_{k=0}^{R-1} c_{k}(n-k)!+\mathcal{O}((n-R)!) \quad \forall R \in \mathbb{N}_{0}
$$

where $c_{k}=\left[x^{k}\right](\mathcal{A} S)(x)$.

- After simplifications:

$$
(\mathcal{A} S)(x)=\frac{1}{x} \frac{1}{1+x} \frac{1-x-(1+x) \frac{S(x)}{x}}{1+(1+x) \frac{S(x)}{x^{2}}} e^{-\frac{2+(1+x) \frac{S(x)}{x^{2}}}{1-x-(1+x) \frac{S(x)}{x}}}
$$

- We get the full asymptotic expansion for S :

$$
\begin{aligned}
& \quad\left[x^{n}\right] S(x)=\sum_{k=0}^{R-1} c_{k}(n-k)!+\mathcal{O}((n-R)!) \quad \forall R \in \mathbb{N}_{0} \\
& \text { where } c_{k}=\left[x^{k}\right](\mathcal{A} S)(x) \\
& {\left[x^{n}\right] S(x)=e^{-2} n!\left(1-\frac{4}{n}+\frac{2}{n(n-1)}-\frac{40}{3 n(n-1)(n-2)}+\ldots\right),}
\end{aligned}
$$

the first three coefficients have been obtained by Albert, Klazar, and Atkinson [2003].

- Allows to extract explicit asymptotic information from implicitly given power
Ring of factorially divergent power series series.
- Allows to extract explicit asymptotic information from implicitly given power
Ring of factorially divergent power series

Direct combinatorial applications series.

- Combinatorial applications include permutations мв [2016a], chord diagrams Courtiel, Yeats, and Zeilberger [2016] and graphs.
- Allows to extract explicit asymptotic information from implicitly given power series.
- Combinatorial applications include permutations мв [2016a], chord diagrams Courtiel, Yeats, and Zeilberger [2016] and graphs.
- Necessary to obtain all order asymptotics from renormalized quantities:

$$
f(\alpha) \rightarrow f\left(\alpha\left(\alpha_{\text {ren }}\right)\right)
$$

- Allows to extract explicit asymptotic information from implicitly given power series.
- Combinatorial applications include permutations мв [2016a], chord diagrams Courtiel, Yeats, and Zeilberger [2016] and graphs.
- Necessary to obtain all order asymptotics from renormalized quantities:

$$
f(\alpha) \rightarrow f\left(\alpha\left(\alpha_{\text {ren }}\right)\right)
$$

3. Renormalization

 Hopf algebra of graphs- Hopf algebraic approach

3. Renormalization

Hopf algebra of graphs based on the works of connes and Kreimer [2001], Kreimer and Yeats [2006], van Suijlekom [2007].

3. Renormalization
 Hopf algebra of graphs

- Hopf algebraic approach based on the works of connes and Kreimer [2001], Kreimer and Yeats [2006], van Suijlekom [2007].

■ Generalized to allow arbitrary graphs.

- Starting point is to equip \mathcal{G} with a coproduct:

where the sum is over any subgraphs of Γ.
- Starting point is to equip \mathcal{G} with a coproduct:
Δ :
\mathcal{G}
\rightarrow
$\Gamma \quad \mapsto$

$$
\begin{gathered}
\mathcal{G} \otimes \mathcal{G} \\
\sum_{\gamma \subset \Gamma} \gamma \otimes \Gamma / \gamma
\end{gathered}
$$

where the sum is over any subgraphs of Γ.
Example:

$$
\begin{aligned}
\Delta \Theta=\sum_{\gamma \subset \bigcirc} \gamma \otimes \Theta / \gamma & =\alpha^{2} \otimes \Theta+\Theta \otimes \cdot \\
& +3 \cdots \otimes \infty+3-\bigcirc \bullet Q
\end{aligned}
$$

Hopf ideals in \mathcal{G} mb [2018 PhD thesis]

A given set of graphs \mathfrak{P}, which is closed under insertion and contraction of subgraphs corresponds to a Hopf ideal $l_{\mathfrak{P}}$ of \mathcal{G}.

Hopf ideals in \mathcal{G} mb [2018 PhD thesis]

A given set of graphs \mathfrak{P}, which is closed under insertion and contraction of subgraphs corresponds to a Hopf ideal $l_{\mathfrak{P}}$ of \mathcal{G}.

- The quotient of $\mathcal{G} / \mathscr{F}_{\mathfrak{P}}$ with respect of one of these ideals is the Connes-Kreimer Hopf algebra.
- The coproduct gives rise to a group structure $\Phi_{A}^{\mathcal{G}}$ on the set of all algebra homomorphisms.
- The coproduct gives rise to a group structure $\Phi_{A}^{\mathcal{G}}$ on the set of all algebra homomorphisms.
- If ϕ and ψ are algebra homomorphisms $\mathcal{G} \rightarrow \mathbb{A}$, then

$$
\phi \star \psi=m \circ(\phi \otimes \psi) \circ \Delta
$$

is another algebra homomorphism.

- The coproduct gives rise to a group structure $\Phi_{A}^{\mathcal{G}}$ on the set of all algebra homomorphisms.
- If ϕ and ψ are algebra homomorphisms $\mathcal{G} \rightarrow \mathbb{A}$, then

$$
\phi \star \psi=m \circ(\phi \otimes \psi) \circ \Delta
$$

is another algebra homomorphism.

- Every ideal $\mathfrak{l}_{\mathfrak{P}}$ gives rise to another group $\Phi_{\mathbb{A}}^{\mathcal{G} / \mathfrak{l}_{\mathfrak{F}}}$ which acts on $\Phi_{A}^{\mathcal{G}}$.
- The inverse $\phi^{\star-1}$ of $\phi \in \Phi_{A}^{\mathcal{G}}$ may be analysed using the inclusion poset of subgraphs.
- The inverse $\phi^{\star-1}$ of $\phi \in \Phi_{A}^{\mathcal{G}}$ may be analysed using the inclusion poset of subgraphs.
- In physical QFTs these posets turn out to be algebraic lattices mb [2016b].
- The inverse $\phi^{\star-1}$ of $\phi \in \Phi_{A}^{\mathcal{G}}$ may be analysed using the inclusion poset of subgraphs.
■ In physical QFTs these posets turn out to be algebraic lattices мв [20166].
■ Quotients $\mathcal{G} / \mathscr{l}_{\mathfrak{F}}$ give rise to annihilation mappings,

$$
\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \zeta(\Gamma)= \begin{cases}1 & \text { if } \Gamma \text { does not contain a subgraph from } \mathfrak{P} . \\ 0 & \text { else }\end{cases}
$$

where ζ is the characteristic map $\zeta: \Gamma \mapsto 1$.

- The inverse $\phi^{\star-1}$ of $\phi \in \Phi_{A}^{\mathcal{G}}$ may be analysed using the inclusion poset of subgraphs.
■ In physical QFTs these posets turn out to be algebraic lattices mв [2016b].
■ Quotients $\mathcal{G} / \mathscr{F}_{\mathfrak{F}}$ give rise to annihilation mappings,

$$
\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \zeta(\Gamma)= \begin{cases}1 & \text { if } \Gamma \text { does not contain a subgraph from } \mathfrak{P} . \\ 0 & \text { else }\end{cases}
$$

where ζ is the characteristic map $\zeta: \Gamma \mapsto 1$.

- These maps allow us to obtain generating functions of graphs without subgraphs in \mathfrak{P}.

■ We have an identity on \mathcal{G} Kreimer [2006], van Suïlekom [2007], Yeats [2008]

$$
\Delta \mathfrak{X}=\sum_{\Gamma} \prod_{v \in V_{\Gamma}}\left(d_{\Gamma}^{(v)}!\right) \mathfrak{X}^{(v)} \otimes \frac{\Gamma}{\mid \text { Aut } \Gamma \mid},
$$

where $\mathfrak{X}=\sum_{\Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}$ and $\mathfrak{X}^{(v)}:=\sum_{\text {res } \Gamma=v} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}$.

■ We have an identity on \mathcal{G} Kreimer [2006], van Suijlekom [2007], Yeats [2008]

$$
\Delta \mathfrak{X}=\sum_{\Gamma} \prod_{v \in V_{\Gamma}}\left(d_{\Gamma}^{(v)}!\right) \mathfrak{X}^{(v)} \otimes \frac{\Gamma}{\mid \text { Aut } \Gamma \mid},
$$

where $\mathfrak{X}=\sum_{\Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma\rangle}$ and $\mathfrak{X}^{(v)}:=\sum_{\text {res } \Gamma=v} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}$.

- Allows the explicit evaluation of products of algebra homomorphisms in the combinatorial case,

$$
\left.\zeta^{\star-1}\right|_{\mathfrak{F}} \star \phi(\mathfrak{X})=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+\left.\sum_{k \geq 0} \zeta^{\star-1}\right|_{\mathfrak{B}}\left(\mathfrak{X}^{\left(v_{k}\right)}\right)_{k!}^{x_{k}}\right)}
$$

The generating function of graphs without subgraphs in \mathfrak{P}.

■ We have an identity on \mathcal{G} Kreimer [2006], van Suïlekom [2007], Yeats [2008]

$$
\Delta \mathfrak{X}=\sum_{\Gamma} \prod_{v \in V_{\Gamma}}\left(d_{\Gamma}^{(v)}!\right) \mathfrak{X}^{(v)} \otimes \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}
$$

where $\mathfrak{X}=\sum_{\Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}$ and $\mathfrak{X}^{(v)}:=\sum_{\text {res } \Gamma=v} \frac{\Gamma}{\mid \text { Aut } \Gamma}$.

- Allows the explicit evaluation of products of algebra homomorphisms in the combinatorial case,

$$
\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \phi(\mathfrak{X})=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+\left.\sum_{k \geq 0} \zeta^{\star-1}\right|_{\mathfrak{F}}\left(\mathfrak{X}^{\left(v_{k}\right)}\right)_{k!}^{x^{k}}\right)}
$$

The generating function of graphs without subgraphs in \mathfrak{P}.

- The factors $\left.\zeta^{\star-1}\right|_{\mathfrak{P}}\left(\mathfrak{X}^{(v)}\right)$ are the 'counterterms'.

■ We have an identity on \mathcal{G} Kreimer [2006], van Suïlekom [2007], Yeats [2008]

$$
\Delta \mathfrak{X}=\sum_{\Gamma} \prod_{v \in V_{\Gamma}}\left(d_{\Gamma}^{(v)}!\right) \mathfrak{X}^{(v)} \otimes \frac{\Gamma}{\mid \text { Aut } \Gamma \mid},
$$

where $\mathfrak{X}=\sum_{\Gamma} \frac{\Gamma}{\mid \text { Aut } \Gamma\rangle}$ and $\mathfrak{X}^{(v)}:=\sum_{\text {res } \Gamma=v} \frac{\Gamma}{\mid \text { Aut } \Gamma \mid}$.

- Allows the explicit evaluation of products of algebra homomorphisms in the combinatorial case,

$$
\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \phi(\mathfrak{X})=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+\left.\sum_{k \geq 0} \zeta^{\star-1}\right|_{\mathfrak{F}}\left(\mathfrak{X}^{\left(v_{k}\right)}\right)^{\frac{x^{k}}{k!}}\right)}
$$

The generating function of graphs without subgraphs in \mathfrak{P}.

- The factors $\left.\zeta^{\star-1}\right|_{\mathfrak{P}}\left(\mathfrak{X}^{(v)}\right)$ are the 'counterterms'.
- Explicit asymptotics can be obtained in the ring of factorially divergent power series.

Counting subgraph restricted graphs

■ Let $f_{\mathfrak{M}}$ be the generating function of all graphs \mathfrak{M} with marked degrees

$$
f_{\mathfrak{M}}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots\right)=\sum_{\Gamma \in \mathfrak{M}} \frac{\prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}}{|\operatorname{Aut} \Gamma|}=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}+\sum_{k \geq 0} \lambda_{k} \frac{x^{k}}{k!}}
$$

Counting subgraph restricted graphs

■ Let $f_{\mathfrak{M}}$ be the generating function of all graphs \mathfrak{M} with marked degrees

$$
f_{\mathfrak{M}}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots\right)=\sum_{\Gamma \in \mathfrak{M}} \frac{\prod_{v \in v_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}}{|\operatorname{Aut} \Gamma|}=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}+\sum_{k \geq 0} \lambda_{k} \frac{x^{k}}{k!}}
$$

- We can write this generating function as an image of an algebra homomorphism

$$
s k_{\lambda} \star \zeta(\mathfrak{X})=f_{\mathfrak{M}}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots\right)
$$

where $\zeta: \Gamma \mapsto 1$ is a characteristic map and

Counting subgraph restricted graphs

■ Let $f_{\mathfrak{M}}$ be the generating function of all graphs \mathfrak{M} with marked degrees

$$
f_{\mathfrak{M}}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots\right)=\sum_{\Gamma \in \mathfrak{M}} \frac{\prod_{v \in v_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}}{|\operatorname{Aut} \Gamma|}=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}+\sum_{k \geq 0} \lambda_{k} \frac{x^{k}}{k!}}
$$

- We can write this generating function as an image of an algebra homomorphism

$$
s k_{\lambda} \star \zeta(\mathfrak{X})=f_{\mathfrak{M}}\left(\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots\right)
$$

where $\zeta: \Gamma \mapsto 1$ is a characteristic map and

$$
s k_{\lambda}: \Gamma \mapsto \begin{cases}\prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}} & \text { if } \Gamma \text { has no edges } \\ 0 & \text { else }\end{cases}
$$

■ Using the modified algebra homomorphism,

$$
s k_{\lambda} \star\left(\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \zeta\right)(\mathfrak{X})=
$$

$\frac{\prod_{v \in v_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}}{\mid \text { Aut } \Gamma \mid}$
s.t. Γ has no subgraphs from \mathfrak{P}

■ Using the modified algebra homomorphism,

$$
s k_{\lambda} \star\left(\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \zeta\right)(\mathfrak{X})=\sum_{\substack{\Gamma \in \mathfrak{M} \\ \text { s.t. } \Gamma \text { has no subgraphs from } \mathfrak{P}}} \frac{\prod_{v \in V_{\Gamma} \lambda_{d_{\Gamma}^{(v)}}}^{\mid \text {Aut } \Gamma \mid}}{\text { 再 }}
$$

gives the generating function

$$
=: f_{\mathfrak{M} / \mathfrak{P}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)
$$

of all graphs without subgraphs from \mathfrak{P}.

By using the factorization formula for the coproduct:

$$
f_{\mathfrak{M} / \mathfrak{P}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=s k_{\lambda} \star\left(\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \zeta\right)(\mathfrak{X})
$$

By using the factorization formula for the coproduct:

$$
\begin{gathered}
f_{\mathfrak{M} / \mathfrak{P}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=s k_{\lambda} \star\left(\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \zeta\right)(\mathfrak{X}) \\
=\left(\left.s k_{\boldsymbol{\lambda}} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\right) \star \zeta(\mathfrak{X})=\sum_{\Gamma \in \mathfrak{M}} \prod_{v \in V_{\Gamma}} \frac{\left.\left(d_{\Gamma}^{(v)}!\right) s k_{\lambda} \star \zeta^{\star-1}\right|_{\mathfrak{P}}(\mathfrak{X}(v))}{|\operatorname{Aut} \Gamma|}
\end{gathered}
$$

By using the factorization formula for the coproduct:

$$
\begin{gathered}
f_{\mathfrak{M} / \mathfrak{P}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=s k_{\lambda} \star\left(\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \zeta\right)(\mathfrak{X}) \\
=\left(\left.s k_{\boldsymbol{\lambda}} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\right) \star \zeta(\mathfrak{X})=\sum_{\Gamma \in \mathfrak{M}} \prod_{v \in V_{\Gamma}} \frac{\left.\left(d_{\Gamma}^{(v)}!\right) s k_{\lambda} \star \zeta^{\star-1}\right|_{\mathfrak{P}}(\mathfrak{X}(v))}{\mid \text { Aut } \Gamma \mid} \\
=f_{\mathfrak{M}}\left(\left.(0!) s k_{\boldsymbol{\lambda}} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\left(\mathfrak{X}^{(0)}\right),\left.(1!) s k_{\boldsymbol{\lambda}} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\left(\mathfrak{X}^{(1)}\right), \ldots\right)
\end{gathered}
$$

By using the factorization formula for the coproduct:

$$
\begin{gathered}
f_{\mathfrak{M} / \mathfrak{P}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=s k_{\boldsymbol{\lambda}} \star\left(\left.\zeta^{\star-1}\right|_{\mathfrak{P}} \star \zeta\right)(\mathfrak{X}) \\
=\left(\left.s k_{\boldsymbol{\lambda}} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\right) \star \zeta(\mathfrak{X})=\sum_{\Gamma \in \mathfrak{M}} \prod_{v \in V_{\Gamma}} \frac{\left.\left(d_{\Gamma}^{(v)}!\right) s k_{\boldsymbol{\lambda}} \star \zeta^{\star-1}\right|_{\mathfrak{P}}(\mathfrak{X}(v))}{\mid \text { Aut } \Gamma \mid} \\
=f_{\mathfrak{M}}\left(\left.(0!) s k_{\lambda} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\left(\mathfrak{X}^{(0)}\right),\left.(1!) s k_{\boldsymbol{\lambda}} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\left(\mathfrak{X}^{(1)}\right), \ldots\right)
\end{gathered}
$$

where we expressed $f_{\mathfrak{M} / \mathfrak{P}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)$ as a generalized composition of $f_{\mathfrak{M}}$ and $\left.s k_{\lambda} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\left(\mathfrak{X}^{(k)}\right)$.

More explicitly

$$
f_{\mathfrak{M} / \mathfrak{F}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=f_{\mathfrak{M}}\left((0!) g_{\mathfrak{F}}^{0}\left(\lambda_{0}, \ldots\right),(1!) g_{\mathfrak{F}}^{1}\left(\lambda_{0}, \ldots\right), \ldots\right)
$$

More explicitly

$$
f_{\mathfrak{M} / \mathfrak{F}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=f_{\mathfrak{M}}\left((0!) g_{\mathfrak{F}}^{0}\left(\lambda_{0}, \ldots\right),(1!) g_{\mathfrak{F}}^{1}\left(\lambda_{0}, \ldots\right), \ldots\right)
$$

where

$$
\begin{aligned}
g_{\mathfrak{P}}^{k}\left(\lambda_{0}, \lambda_{1}, \ldots\right)= & \left.s k_{\lambda} \star \zeta^{\star-1}\right|_{\mathfrak{P}}\left(\mathfrak{X}^{(k)}\right) \\
= & \left.\sum_{\substack{\Gamma \in \mathfrak{P} \\
\Gamma \text { cntd. with } k \text { legs }}} \zeta^{\star-1}\right|_{\mathfrak{P}}(\Gamma) \frac{\prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}}{\mid \text { Aut } \Gamma \mid}
\end{aligned}
$$

More explicitly

$$
f_{\mathfrak{M} / \mathfrak{F}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=f_{\mathfrak{M}}\left((0!) g_{\mathfrak{F}}^{0}\left(\lambda_{0}, \ldots\right),(1!) g_{\mathfrak{F}}^{1}\left(\lambda_{0}, \ldots\right), \ldots\right)
$$

where

$$
\begin{aligned}
g_{\mathfrak{F}}^{k}\left(\lambda_{0}, \lambda_{1}, \ldots\right) & =s k_{\lambda} \star \zeta^{\star-1} \mid \mathfrak{F}\left(\mathfrak{X}^{(k)}\right) \\
& =\sum_{\substack{\Gamma \in \mathfrak{F} \\
\Gamma \text { cntd. with } k \text { legs }}} \zeta^{\star-1} \left\lvert\, \mathfrak{F}(\Gamma) \frac{\prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}}{\mid \text { Aut } \Gamma \mid}\right.
\end{aligned}
$$

and $\left.\zeta^{\star-1}\right|_{\mathfrak{F}}(\Gamma)$ can be expressed as a Moebius function,

$$
\zeta^{\star-1}\left|\mathfrak{F}(\Gamma)=-1-\sum_{\substack{\gamma \subsetneq \Gamma \\ \gamma \in \mathfrak{F}}} \zeta^{\star-1}\right| \mathfrak{F}(\gamma)
$$

Example

- Set \mathfrak{P}. to the set of all graphs with one leg, for instance $-\bigcirc$.

Example

- Set \mathfrak{P}. to the set of all graphs with one leg, for instance $-\bigcirc$.
- Clearly, this set is closed under contraction and insertion of subgraphs.

Example

■ Set \mathfrak{P}. to the set of all graphs with one leg, for instance $-\bigcirc$.

- Clearly, this set is closed under contraction and insertion of subgraphs.
- The set $\mathfrak{M} / \mathfrak{P}_{\text {. }}$ of graphs without subgraphs from \mathfrak{P}. is the set of bridgeless graphs.

Example

■ Set \mathfrak{P}. to the set of all graphs with one leg, for instance $-\bigcirc$.

- Clearly, this set is closed under contraction and insertion of subgraphs.
- The set $\mathfrak{M} / \mathfrak{P}_{\text {. }}$ of graphs without subgraphs from \mathfrak{P}. is the set of bridgeless graphs.
- Using our results,
$f_{\mathfrak{M} / \mathfrak{P}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=f_{\mathfrak{M}}\left((0!) g_{\mathfrak{P}}^{0} \quad\left(\lambda_{0}, \ldots\right),(1!) g_{\mathfrak{P}}^{1} \quad\left(\lambda_{0}, \ldots\right), \ldots\right)$
where now $g_{\mathfrak{P}}^{k}\left(\lambda_{0}, \ldots\right)=\frac{\lambda_{k}}{k!}$ for all $k \neq 1$.

Example

■ Set \mathfrak{P}. to the set of all graphs with one leg, for instance

- Clearly, this set is closed under contraction and insertion of subgraphs.
- The set $\mathfrak{M} / \mathfrak{P}_{\bullet}$. of graphs without subgraphs from \mathfrak{P}_{\bullet} is the set of bridgeless graphs.
- Using our results,
$f_{\mathfrak{M} / \mathfrak{P}}\left(\lambda_{0}, \lambda_{1}, \ldots\right)=f_{\mathfrak{M}}\left((0!) g_{\mathfrak{P}}^{0}\left(\lambda_{0}, \ldots\right),(1!) g_{\mathfrak{P}}^{1} \quad\left(\lambda_{0}, \ldots\right), \ldots\right)$
where now $g_{\mathfrak{F}}^{k} .\left(\lambda_{0}, \ldots\right)=\frac{\lambda_{k}}{k!}$ for all $k \neq 1$.
■ Moreover, by analysing the Moebius function we find that

$$
g_{\mathfrak{P}_{\rightarrow}}^{1}\left(\lambda_{0}, \ldots\right)=-\sum_{\Gamma \in \mathfrak{P}_{-}} \frac{\prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}}{\mid \text { Aut } \Gamma \mid}
$$

Hopf algebra of graphs

- Generating functions of

Hopf algebra of graphs subgraph restricted families of graphs can be obtained.

Applications to restricted graph counting

- Generating functions of subgraph restricted families of graphs can be obtained.
- Feynman rules for physical theories carry additional structures mв [2016b].
- Generating functions of

Hopf algebra of graphs

Applications to restricted graph counting
subgraph restricted families of graphs can be obtained.

- Feynman rules for physical theories carry additional structures mв [2016b].
- Hopf algebraic interpretation of the Legendre transformation in QFT мв [2018 PhD thesis].

Application

Application

- Both Hopf algebra and factorially divergent power series may be used to study zero-dimensional QFT explicitly.

Application

- Both Hopf algebra and factorially divergent power series may be used to study zero-dimensional QFT explicitly.
- All-order generating functions for asymptotics of renormalization quantities can be obtained. MB [2017]

Application

- Both Hopf algebra and factorially divergent power series may be used to study zero-dimensional QFT explicitly.
- All-order generating functions for asymptotics of renormalization quantities can be obtained. MB [2017]
- The densities of primitive diagrams can be computed.

Example

- The generating function of φ^{4} primitives is

$$
p\left(\hbar_{\text {ren }}\right)=1-z^{(\times)}\left(\hbar_{\text {ren }}\right)+3 \sum_{n \geq 2}(-1)^{n}\left(\frac{\hbar_{\text {ren }}}{2}\right)^{n}
$$

which can be proven using the algebraic lattice structure of Feynman diagrams mв [2016b].

Example

- The generating function of φ^{4} primitives is

$$
p\left(\hbar_{\text {ren }}\right)=1-z^{(\times)}\left(\hbar_{\text {ren }}\right)+3 \sum_{n \geq 2}(-1)^{n}\left(\frac{\hbar_{\text {ren }}}{2}\right)^{n}
$$

which can be proven using the algebraic lattice structure of Feynman diagrams mв [2016b].

- The asymptotics of this quantity can be obtained using the ring of factorially divergent power series мв [2017]:

$$
\begin{gathered}
{\left[\hbar_{\text {ren }}^{n}\right] p\left(\hbar_{\text {ren }}\right) \underset{n \rightarrow \infty}{\sim} \frac{e^{-\frac{15}{4}}}{\sqrt{2} \pi}\left(\frac{2}{3}\right)^{n+3} \Gamma(n+3)(36+} \\
\left.-\frac{3}{2} \frac{243}{2} \frac{1}{n+2}+\left(\frac{3}{2}\right)^{2} \frac{729}{32} \frac{1}{(n+1)(n+2)}+\ldots\right)
\end{gathered}
$$

Example

- The generating function of φ^{4} primitives is

$$
p\left(\hbar_{\text {ren }}\right)=1-z^{(\times)}\left(\hbar_{\text {ren }}\right)+3 \sum_{n \geq 2}(-1)^{n}\left(\frac{\hbar_{\text {ren }}}{2}\right)^{n}
$$

which can be proven using the algebraic lattice structure of Feynman diagrams мв [2016b].

- The asymptotics of this quantity can be obtained using the ring of factorially divergent power series мв [2017]:

$$
\begin{aligned}
& {\left[\hbar_{\mathrm{ren}}^{n}\right] p\left(\hbar_{\mathrm{ren}}\right) \underset{n \rightarrow \infty}{\sim} \frac{e^{-\frac{15}{4}}}{\sqrt{2} \pi}\left(\frac{2}{3}\right)^{n+3} \Gamma(n+3)(36+} \\
& \left.-\frac{3}{2} \frac{243}{2} \frac{1}{n+2}+\left(\frac{3}{2}\right)^{2} \frac{729}{32} \frac{1}{(n+1)(n+2)}+\ldots\right)
\end{aligned}
$$

- Which can be compared with the expansion of the φ^{4} β-function Kompaniets and Panzer [2017], where asymptotically only primitives are expected to contribute.
- Similarly, the number of primitives in quenched QED:

$$
\left.1-z^{(\text {wr }}\right)\left(\hbar_{\text {ren }}\right)
$$

- Similarly, the number of primitives in quenched QED:

$$
1-z^{\left(\max _{x}^{x}\right)}\left(\hbar_{\text {ren }}\right)
$$

- The asymptotics can again be calculated to arbitrary order,

$$
\begin{aligned}
& {\left.\left[\hbar_{\text {ren }}^{n}\right]\left(1-z^{(w \times x}\right)\left(\hbar_{\text {ren }}\right)\right) \underset{n \rightarrow \infty}{\sim} e^{-2}(2 n+1)!!\left(1-\frac{6}{2 n+1}\right.} \\
- & \left.\frac{4}{(2 n-1)(2 n+1)}-\frac{218}{3} \frac{1}{(2 n-3)(2 n-1)(2 n+1)}+\ldots\right) .
\end{aligned}
$$

- Similarly, the number of primitives in quenched QED:

$$
\left.1-z^{(\text {wr }}\right)\left(\hbar_{\text {ren }}\right)
$$

- The asymptotics can again be calculated to arbitrary order,

$$
\begin{aligned}
& {\left[\hbar_{\text {ren }}^{n}\right]\left(1-z^{(w \times x}\right) } \\
\left.\left(\hbar_{\text {ren }}\right)\right) & \underset{n \rightarrow \infty}{\sim} e^{-2}(2 n+1)!!\left(1-\frac{6}{2 n+1}\right. \\
- & \left.\frac{4}{(2 n-1)(2 n+1)}-\frac{218}{3} \frac{1}{(2 n-3)(2 n-1)(2 n+1)}+\ldots\right) .
\end{aligned}
$$

mв [2017] which resolves a question by David Broadhurst and Freeman Dyson.

Summary

Summary

Summary

1. Perturbative QFT

Algebra of graphs
2. Non-perturbative aspects

Ring of factorially divergent power series

Direct combinatorial applications
3. Renormalization Hopf algebra of graphs
4. Application

Zero-dimensional toy models and diagram counting

Applications to restricted graph counting

MH Albert, M Klazar, and MD Atkinson. The enumeration of simple permutations. 2003.
EN Argyres, AFW van Hameren, RHP Kleiss, and CG Papadopoulos. Zero-dimensional field theory. The European Physical Journal C-Particles and Fields, 19(3):567-582, 2001.
G Bașar, GV Dunne, and M Ünsal. Resurgence theory, ghost-instantons, and analytic continuation of path integrals. Journal of High Energy Physics, 2013(10), 2013.
CM Bender and TT Wu. Anharmonic oscillator. Phys. Rev., 184: 1231-1260, 1969.
EA Bender. An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3):451-458, 1975.
E Brezin, JC Le Guillou, and Jean Zinn-Justin. Perturbation theory at large order. i. the $\varphi 2 \mathrm{n}$ interaction. Physical Review D, 15 (6):1544, 1977.

Louis Comtet. Sur les coefficients de l'inverse de la série formelle $\sum n!t^{n}$. CR Acad. Sci. Paris, Ser. A, 275(1):972, 1972.

A Connes and D Kreimer. Renormalization in quantum field theory and the Riemann-Hilbert problem II: The β-function, diffeomorphisms and the renormalization group.
Communications in Mathematical Physics, 216(1):215-241, 2001.

J Courtiel, K Yeats, and N Zeilberger. Connected chord diagrams and bridgeless maps. arXiv preprint arXiv:1611.04611, 2016.
P Cvitanović, B Lautrup, and RB Pearson. Number and weights of Feynman diagrams. Phys. Rev. D, 18:1939-1949, 1978.
FJ Dyson. Divergence of perturbation theory in quantum electrodynamics. Phys. Rev., 85:631-632, 1952.
J Écalle. Les fonctions résurgentes. Publ. math. d'Orsay/Univ. de Paris, Dep. de math., 1981.
RP Feynman. The theory of positrons. Physical Review, 76(6):749, 1949.

CA Hurst. The enumeration of graphs in the Feynman-Dyson technique. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 214, pages 44-61. The Royal Society, 1952.

MV Kompaniets and E Panzer. Minimally subtracted six-loop renormalization of $O(n)$-symmetric ϕ^{4} theory and critical exponents. Phys. Rev. D, 96:036016, 2017.
D Kreimer. Anatomy of a gauge theory. Annals of Physics, 321 (12):2757-2781, 2006.

D Kreimer and K Yeats. An étude in non-linear dyson schwinger equations. Nuclear Physics B Proceedings Supplements, 160: 116-121, 2006.
LN Lipatov. Divergence of the perturbation theory series and the quasiclassical theory. Sov. Phys. JETP, 45(2):216-223, 1977.
MB. Generating asymptotics for factorially divergent sequences. arXiv preprint arXiv:1603.01236, 2016a.
MB. Algebraic lattices in QFT renormalization. Letters in Mathematical Physics, 106(7):879-911, 2016b.
MB. Renormalized asymptotic enumeration of feynman diagrams. Annals of Physics, 385:95-135, 2017.
MB. Graphs in perturbation theory: Algebraic structure and asymptotics. 2018 PhD thesis.

AJ McKane and DJ Wallace. Instanton calculations using dimensional regularisation. Journal of Physics A: Mathematical and General, 11(11):2285, 1978.
AJ McKane, DJ Wallace, and DF de Alcantara Bonfim.
Non-perturbative renormalisation using dimensional regularisation: applications to the epsilon expansion. Journal of Physics A: Mathematical and General, 17(9):1861, 1984.
G t'Hooft. The whys of subnuclear physics. In Proceedings of the international school of subnuclear physics, Erice, pages 943-971, 1979.

WD van Suijlekom. Renormalization of gauge fields: A Hopf algebra approach. Communications in Mathematical Physics, 276(3):773-798, 2007.
K Yeats. Growth estimates for Dyson-Schwinger equations. PhD thesis, Boston University, 2008.

