Graphs in perturbation theory: Algebraic structure and asymptotics

Michael Borinsky

Humboldt-University Berlin Departments of Physics and Mathematics

Summer school on structures in local quantum field theory Les Houches 6th June 2018

1. Perturbative QFT

Algebra of graphs

Algebra of graphs

Feynman [1949] Organize perturbation expansion in terms of **graphs**.

1. Perturbative QFT

Algebra of graphs

Algebra of graphs

Feynman [1949] Organize perturbation expansion in terms of **graphs**.

Each graph represents an integral.

Algebra of graphs

Feynman [1949] Organize perturbation expansion in terms of **graphs**.

- Each graph represents an integral.
- \Rightarrow Use an algebra to represent graphs.

Algebra of graphs

Feynman [1949] Organize perturbation expansion in terms of **graphs**.

- Each graph represents an integral.
- \Rightarrow Use an algebra to represent graphs.
 - Encode Feynman rules as algebra homomorphisms.

Algebra homomorphisms of graphs

The algebra of graphs:

$$\mathcal{G}:=\left\langle \left\{ \bigcirc -\odot, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \cdots \right\} \right\rangle$$

Algebra homomorphisms of graphs

The algebra of graphs:

$$\mathcal{G}:=\left\langle \left\{ \bigcirc -\odot, \bigcirc, \ldots \right\} \right\rangle$$

Feynman rules are algebra homomorphisms $\phi : \mathcal{G} \to \mathbb{A}$.

In zero-dimensional QFT:

$$\phi_{\boldsymbol{\lambda}}: {\boldsymbol{\Gamma}} \mapsto \hbar^{\# \mathrm{edges} - \# \mathrm{vertices}} \prod_{\boldsymbol{\nu} \in V_{\boldsymbol{\Gamma}}} \lambda_{d_{\boldsymbol{\Gamma}}^{(\boldsymbol{\nu})}},$$

where $d_{\Gamma}^{(\nu)}$ is the degree of the vertex ν in Γ and the λ_k control the allowed degrees of the vertices.

In zero-dimensional QFT:

$$\phi_{\boldsymbol{\lambda}}: \boldsymbol{\Gamma} \mapsto \hbar^{\# \mathrm{edges} - \# \mathrm{vertices}} \prod_{\boldsymbol{\nu} \in \mathcal{V}_{\boldsymbol{\Gamma}}} \lambda_{d_{\boldsymbol{\Gamma}}^{(\boldsymbol{\nu})}},$$

where $d_{\Gamma}^{(v)}$ is the degree of the vertex v in Γ and the λ_k control the allowed degrees of the vertices.

Explicit access to unrenormalized quantities by path integral:

$$Z_{\lambda}(\hbar) := \phi_{\lambda} \left(\sum_{\text{graphs } \Gamma} \frac{\Gamma}{|\operatorname{Aut } \Gamma|} \right) = \int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar} \left(-\frac{x^2}{2} + \sum_{k \ge 3} \lambda_k \frac{x^k}{k!} \right)}$$
$$= \phi_{\lambda} \left(\mathbb{1} + \frac{1}{8} \bigcirc \bigcirc + \frac{1}{12} \bigcirc + \frac{1}{8} \bigcirc \bigcirc + \frac{1}{128} \bigcirc \bigcirc + \cdots \right)$$
$$= 1 + \left(\left(\frac{1}{8} + \frac{1}{12} \right) \lambda_3^2 + \frac{1}{8} \lambda_4 \right) \hbar + \cdots$$

Hurst [1952], Cvitanović, Lautrup, and Pearson [1978]

Argyres, van Hameren, Kleiss, and Papadopoulos [2001]

Interpret observables as perturbation expansions

$$\int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar} \left(-\frac{x^2}{2} + \sum_{k \ge 3} \lambda_k \frac{x^k}{k!}\right)} = \sum_{n=0}^{\infty} z_n(\lambda)\hbar^n$$

Interpret observables as perturbation expansions

$$\int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar} \left(-\frac{x^2}{2} + \sum_{k \ge 3} \lambda_k \frac{x^k}{k!}\right)} = \sum_{n=0}^{\infty} z_n(\lambda)\hbar^n$$

The coefficients z_n(λ) count graphs of excess n with degree distribution encoded in λ.

• The large *n* asymptotics of $z_n(\lambda)$ are accessible

Theorem мв [2017]

$$z_n(\lambda) =_{n\to\infty} A^{-n}\Gamma(n)\left(c_0(\lambda)+c_1(\lambda)\frac{A}{n-1}+c_2(\lambda)\frac{A^2}{(n-1)(n-2)}+\ldots\right)$$

where with $S(x) = -\frac{x^2}{2} + \sum_{k \ge 0} \lambda_k \frac{x^k}{k!}$

$$\int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{-\frac{1}{\hbar}(\mathcal{S}(x+\tau)-\mathcal{S}(\tau))} = \sum_{m=0}^{\infty} c_m(\lambda)(-\hbar)^m$$

and (τ, A) are the coordinates of the dominant saddle point of S(x), which can be obtained by analysis of the hyperelliptic curve $-\frac{y^2}{2} = S(x)$.

• The large *n* asymptotics of $z_n(\lambda)$ are accessible

Theorem мв [2017]

$$z_n(\lambda) =_{n\to\infty} A^{-n}\Gamma(n)\left(c_0(\lambda)+c_1(\lambda)\frac{A}{n-1}+c_2(\lambda)\frac{A^2}{(n-1)(n-2)}+\ldots\right)$$

where with $S(x) = -\frac{x^2}{2} + \sum_{k \ge 0} \lambda_k \frac{x^k}{k!}$

$$\int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{-\frac{1}{\hbar}(\mathcal{S}(x+\tau)-\mathcal{S}(\tau))} = \sum_{m=0}^{\infty} c_m(\lambda)(-\hbar)^m$$

and (τ, A) are the coordinates of the dominant saddle point of S(x), which can be obtained by analysis of the hyperelliptic curve $-\frac{y^2}{2} = S(x)$.

• $c_m(\lambda) = z_m(\lambda')$ - the asymptotic expansion enumerates graphs with a modified degree distribution.

• The large *n* asymptotics of $z_n(\lambda)$ are accessible

Theorem мв [2017]

$$z_n(\lambda) =_{n\to\infty} A^{-n}\Gamma(n)\left(c_0(\lambda)+c_1(\lambda)\frac{A}{n-1}+c_2(\lambda)\frac{A^2}{(n-1)(n-2)}+\ldots\right)$$

where with $S(x) = -\frac{x^2}{2} + \sum_{k \ge 0} \lambda_k \frac{x^k}{k!}$

$$\int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{-\frac{1}{\hbar}(\mathcal{S}(x+\tau)-\mathcal{S}(\tau))} = \sum_{m=0}^{\infty} c_m(\lambda)(-\hbar)^m$$

and (τ, A) are the coordinates of the dominant saddle point of S(x), which can be obtained by analysis of the hyperelliptic curve $-\frac{y^2}{2} = S(x)$.

- $c_m(\lambda) = z_m(\lambda')$ the asymptotic expansion enumerates graphs with a modified degree distribution.
- This is a generalization of a result of Başar, Dunne, and Ünsal [2013] and a resurgence phenomenon.

Figure: Example: The curve $\frac{y^2}{2} = \frac{x^2}{2} - \frac{x^3}{3!}$ associated to Z^{φ^3} .

Figure: Example: The curve $\frac{y^2}{2} = \frac{x^2}{2} - \frac{x^3}{3!}$ associated to Z^{φ^3} .

 $\Rightarrow x(y)$ has a (dominant) branch-cut singularity at $y = \rho = \frac{2}{\sqrt{3}}$, where $x(\rho) = \tau = 2$.

• For cubic graphs or equivalently φ^3 theory, we are interested in the action $-\frac{x^2}{2} + \frac{x^3}{3!}$, therefore $\lambda_3 = 1$ and $\lambda_k = 0$ for all $k \neq 3$,

• For cubic graphs or equivalently φ^3 theory, we are interested in the action $-\frac{x^2}{2} + \frac{x^3}{3!}$, therefore $\lambda_3 = 1$ and $\lambda_k = 0$ for all $k \neq 3$,

$$\begin{split} \phi_{\lambda_3} \big(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigoplus + \frac{1}{128} \bigcirc -\bigcirc + \dots \big) \\ 1 + \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 + \frac{85085}{82944} \hbar^3 + \dotsb \end{split}$$

• For cubic graphs or equivalently φ^3 theory, we are interested in the action $-\frac{x^2}{2} + \frac{x^3}{3!}$, therefore $\lambda_3 = 1$ and $\lambda_k = 0$ for all $k \neq 3$,

$$\phi_{\lambda_3} \left(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigcirc + \frac{1}{128} \bigcirc -\bigcirc + \cdots \right) \\ 1 + \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 + \frac{85085}{82944} \hbar^3 + \cdots$$

• We find $\tau = 2$, $A = \frac{2}{3}$ and the coefficients of the asymptotic expansion

$$\sum_{k=0}^{\infty} c_k (-\hbar)^k = \frac{1}{2\pi} \phi_{\lambda'_3} \left(\sum_{\Gamma} \frac{\Gamma}{|\operatorname{Aut} \Gamma|} \right) = \frac{1}{2\pi} \phi_{\lambda_3} \left(\sum_{\Gamma} \frac{\Gamma}{|\operatorname{Aut} \Gamma|} \right)$$
$$= \frac{1}{2\pi} \left(1 + \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 + \frac{85085}{82944} \hbar^3 + \dots \right)$$

(

 \Rightarrow

• For cubic graphs or equivalently φ^3 theory, we are interested in the action $-\frac{x^2}{2} + \frac{x^3}{3!}$, therefore $\lambda_3 = 1$ and $\lambda_k = 0$ for all $k \neq 3$,

$$\phi_{\lambda_3} \left(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigcirc + \frac{1}{128} \bigcirc -\bigcirc + \cdots \right) \\ 1 + \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 + \frac{85085}{82944} \hbar^3 + \cdots$$

• We find $\tau = 2$, $A = \frac{2}{3}$ and the coefficients of the asymptotic expansion

$$\sum_{k=0}^{\infty} c_k (-\hbar)^k = \frac{1}{2\pi} \phi_{\lambda'_3} \left(\sum_{\Gamma} \frac{\Gamma}{|\operatorname{Aut} \Gamma|} \right) = \frac{1}{2\pi} \phi_{\lambda_3} \left(\sum_{\Gamma} \frac{\Gamma}{|\operatorname{Aut} \Gamma|} \right)$$
$$= \frac{1}{2\pi} \left(1 + \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 + \frac{85085}{82944} \hbar^3 + \dots \right)$$
The asymptotic expansion is $[\hbar^n] \mathcal{F} [\mathcal{S}(x)] (\hbar) =$
$$\sum_{k=0}^{R-1} c_k A^{-n+k} \Gamma(n-k) + \mathcal{O}(A^{-n+R} \Gamma(n-R)).$$

(

• The large *n* asymptotics of $z_n(\lambda)$ are accessible

Theorem мв [2017]

$$z_n(\lambda) = A^{-n}\Gamma(n)\left(c_0(\lambda) + c_1(\lambda)\frac{A}{n-1} + c_2(\lambda)\frac{A^2}{(n-1)(n-2)} + \ldots\right)$$

where with
$$S(x) = -\frac{x^2}{2} + \sum_{k \ge 0} \lambda_k \frac{x^k}{k!}$$

$$\int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{-\frac{1}{\hbar}(\mathcal{S}(x+\tau)-\mathcal{S}(\tau))} = \sum_{m=0}^{\infty} c_m(\lambda)(-\hbar)^m$$

and (τ, A) are the coordinates of the dominant saddle point of S(x), which can be obtained by analysis of the hyperelliptic curve $-\frac{y^2}{2} = S(x)$.

c_m(λ) = z_m(λ') - the asymptotic expansion enumerates graphs with a modified degree distribution.

Ring of factorially divergent power series

Ring of factorially divergent power series

 Interest in composite quantities, e.g.

 $\log\left(Z_{\boldsymbol{\lambda}}(\hbar)\right)$

for connected graphs or the free energy of the QFT.

Ring of factorially divergent power series

 Interest in composite quantities, e.g.

 $\log(Z_{\lambda}(\hbar))$

for connected graphs or the free energy of the QFT.

 Asymptotic expansions can be extracted using the ring of factorially divergent power series MB [2016a].

Ring of factorially divergent power series

 Interest in composite quantities, e.g.

 $\log(Z_{\lambda}(\hbar))$

for connected graphs or the free energy of the QFT.

- Asymptotic expansions can be extracted using the ring of factorially divergent power series MB [2016a].
- Powerseries version of alien calculus [Écalle, 1981].

Structure of factorially divergent power series

• Power series $\sum_{n\geq 0} f_n x^n$, which admit an asymptotic expansion

$$f_n \underset{n\to\infty}{=} A^{-n} \Gamma(n) \left(c_0 + c_1 \frac{A}{n-1} + c_2 \frac{A^2}{(n-1)(n-2)} + \ldots \right),$$

form a subring $\mathbb{R}[[x]]^A$ of $\mathbb{R}[[x]]$, which is closed under composition and inversion of power series.

Structure of factorially divergent power series

• Power series $\sum_{n\geq 0} f_n x^n$, which admit an asymptotic expansion

$$f_n \underset{n\to\infty}{=} A^{-n} \Gamma(n) \left(c_0 + c_1 \frac{A}{n-1} + c_2 \frac{A^2}{(n-1)(n-2)} + \ldots \right),$$

form a subring $\mathbb{R}[[x]]^A$ of $\mathbb{R}[[x]]$, which is closed under composition and inversion of power series.

• First step: Interpret the coefficients c_k as a new power series.

Structure of factorially divergent power series

• Power series $\sum_{n\geq 0} f_n x^n$, which admit an asymptotic expansion

$$f_n \underset{n\to\infty}{=} A^{-n} \Gamma(n) \left(c_0 + c_1 \frac{A}{n-1} + c_2 \frac{A^2}{(n-1)(n-2)} + \ldots \right),$$

form a subring $\mathbb{R}[[x]]^A$ of $\mathbb{R}[[x]]$, which is closed under composition and inversion of power series.

- First step: Interpret the coefficients c_k as a new power series.
- Second step: Define an operator on $\mathbb{R}[[x]]^A$:

$$\mathcal{A} : \mathbb{R}[[x]]^{\mathcal{A}} \to \mathbb{R}[[x]]$$
$$f(x) \mapsto \sum_{k>0} c_k x^k$$

•
$$\mathcal{A}$$
 is a derivation on $\mathbb{R}[[x]]^{\mathcal{A}}$:

Theorem MB [2016a]

$$(\mathcal{A}f \cdot g)(x) = f(x)(\mathcal{A}g)(x) + (\mathcal{A}f)(x)g(x)$$

•
$$\mathcal{A}$$
 is a derivation on $\mathbb{R}[[x]]^{\mathcal{A}}$:

Theorem мв [2016а]

$$(\mathcal{A}f \cdot g)(x) = f(x)(\mathcal{A}g)(x) + (\mathcal{A}f)(x)g(x)$$

 $\Rightarrow \mathbb{R}[[x]]^A$ is a subring of $\mathbb{R}[[x]]$.

• \mathcal{A} is a derivation on $\mathbb{R}[[x]]^{\mathcal{A}}$:

Theorem мв [2016а]

$$(\mathcal{A}f \cdot g)(x) = f(x)(\mathcal{A}g)(x) + (\mathcal{A}f)(x)g(x)$$

 $\Rightarrow \mathbb{R}[[x]]^A$ is a subring of $\mathbb{R}[[x]]$.

Proof sketch

With h(x) = f(x)g(x),

$$h_n = \underbrace{\sum_{k=0}^{R-1} f_{n-k} g_k}_{\text{High order times low order}} + \underbrace{\sum_{k=0}^{R-1} f_k g_{n-k}}_{\mathcal{O}(A^{-n}\Gamma(n-R))}$$

• \mathcal{A} is a derivation on $\mathbb{R}[[x]]^{\mathcal{A}}$:

Theorem мв [2016а]

$$(\mathcal{A}f \cdot g)(x) = f(x)(\mathcal{A}g)(x) + (\mathcal{A}f)(x)g(x)$$

 $\Rightarrow \mathbb{R}[[x]]^A$ is a subring of $\mathbb{R}[[x]]$.

Proof sketch

With h(x) = f(x)g(x),

$$h_n = \underbrace{\sum_{k=0}^{R-1} f_{n-k} g_k}_{\text{High order times low order}} + \underbrace{\sum_{k=0}^{R-1} f_k g_{n-k}}_{\mathcal{O}(A^{-n} \Gamma(n-R))}$$

•
$$\sum_{k=R}^{n-R} f_k g_{n-k} \in \mathcal{O}(A^{-n}\Gamma(n-R))$$
 follows from the *log-convexity* of the Γ function.

M. Borinsky (HU Berlin) Graphs in perturbation theory

• What happens for **composition** of power series $\in \mathbb{R}[[x]]^A$?

• What happens for **composition** of power series $\in \mathbb{R}[[x]]^A$?

Theorem Bender [1975]

If $|f_n| \leq C^n$ then, for $g \in \mathbb{R}[[x]]^A$ with $g_0 = 0$: $f \circ g \in \mathbb{R}[[x]]^A$

$$(\mathcal{A} f \circ g)(x) = f'(g(x))(\mathcal{A} g)(x).$$

• What happens for **composition** of power series $\in \mathbb{R}[[x]]^A$?

Theorem Bender [1975]

If
$$|f_n| \leq C^n$$
 then, for $g \in \mathbb{R}[[x]]^A$ with $g_0 = 0$:
 $f \circ g \in \mathbb{R}[[x]]^A$
 $(\mathcal{A} f \circ g)(x) = f'(g(x))(\mathcal{A} g)(x)$

 Bender considered more general power series, but this is a direct corollary of his theorem in 1975.

A reducible permutation:

An irreducible permutation:

A permutation π of [n] = {1,...,n} is called irreducible if there is no m < n such that π([m]) = [m].</p>

A reducible permutation:

An irreducible permutation:

- A permutation π of [n] = {1,...,n} is called irreducible if there is no m < n such that π([m]) = [m].</p>
- Set $F(x) = \sum_{n=1}^{\infty} n! x^n$ the OGF of all permutations.

A reducible permutation:

An irreducible permutation:

- A permutation π of [n] = {1,...,n} is called irreducible if there is no m < n such that π([m]) = [m].</p>
- Set $F(x) = \sum_{n=1}^{\infty} n! x^n$ the OGF of all permutations.
- The OGF of irreducible permutations I fulfills

$$I(x) = 1 - \frac{1}{1 + F(x)}$$

$$I(x) = 1 - \frac{1}{1 + F(x)}$$
 $F(x) = \sum_{n=1}^{\infty} n! x^n.$

$$I(x) = 1 - \frac{1}{1 + F(x)} \qquad F(x) = \sum_{n=1}^{\infty} n! x^n.$$

• By definition: $F \in \mathbb{R}[[x]]^1$ and $(\mathcal{A} F)(x) = \frac{1}{x}.$

$$I(x) = 1 - \frac{1}{1 + F(x)}$$
 $F(x) = \sum_{n=1}^{\infty} n! x^n.$

By definition: $F \in \mathbb{R}[[x]]^1$ and $(\mathcal{A} F)(x) = \frac{1}{x}$.

• $\frac{1}{1+x}$ is analytic at the origin, therefore by the chain rule

$$(\mathcal{A} I)(x) = \left(\mathcal{A}\left(1 - \frac{1}{1 + F(x)}\right)\right)(x) = \frac{1}{x} \frac{1}{(1 + F(x))^2}$$

$$I(x) = 1 - \frac{1}{1 + F(x)}$$
 $F(x) = \sum_{n=1}^{\infty} n! x^n.$

By definition: $F \in \mathbb{R}[[x]]^1$ and $(\mathcal{A} F)(x) = \frac{1}{x}$.

• $\frac{1}{1+x}$ is analytic at the origin, therefore by the chain rule

$$(\mathcal{A} I)(x) = \left(\mathcal{A}\left(1 - \frac{1}{1 + F(x)}\right)\right)(x) = \frac{1}{x} \frac{1}{(1 + F(x))^2}$$

Theorem Comtet [1972]

Therefore the asymptotic expansion of the coefficients of I(x) is

$$[x^n]I(x) = \sum_{k=0}^{R-1} c_k(n-k)! + \mathcal{O}((n-R)!) \qquad \forall R \in \mathbb{N}_0,$$

where $c_k = [x^k] \frac{1}{(1+F(x))^2}$.

This chain rule can easily be generalized to multivalued analytic functions:

Theorem MB [2016a]

More general: For $f \in \mathbb{R}\{y_1, \dots, y_L\}$ and $g^1, \dots, g^L \in x\mathbb{R}[[x]]^A$:

$$(\mathcal{A}(f(g^1,\ldots,g^L))(x) = \sum_{l=1}^L \frac{\partial f}{\partial g^l}(g^1,\ldots,g^L)(\mathcal{A}g^l)(x)$$

• What happens if *f* is not an analytic function?

- What happens if *f* is not an analytic function?
- *A* fulfills a general 'chain rule':

What happens if f is not an analytic function?

■ *A* fulfills a general 'chain rule':

Theorem MB [2016a]

If $f,g \in \mathbb{R}[[x]]^A$ with $g_0 = 0$ and $g_1 = 1$, then $f \circ g \in \mathbb{R}[[x]]^A$ and

$$(\mathcal{A} f \circ g)(x) = f'(g(x))(\mathcal{A} g)(x) + e^{\mathcal{A} \frac{g(x) - x}{\chi g(x)}} (\mathcal{A} f)(g(x))$$

What happens if f is not an analytic function?

■ *A* fulfills a general 'chain rule':

Theorem MB [2016a]

If $f,g\in \mathbb{R}[[x]]^A$ with $g_0=0$ and $g_1=1$, then $f\circ g\in \mathbb{R}[[x]]^A$ and

$$(\mathcal{A}f \circ g)(x) = f'(g(x))(\mathcal{A}g)(x) + e^{\mathcal{A}\frac{g(x)-x}{\chi g(x)}}(\mathcal{A}f)(g(x))$$

 $\Rightarrow \mathbb{R}[[x]]^A$ is closed under composition and inversion.

What happens if f is not an analytic function?

■ *A* fulfills a general 'chain rule':

Theorem MB [2016a]

If $f,g \in \mathbb{R}[[x]]^A$ with $g_0 = 0$ and $g_1 = 1$, then $f \circ g \in \mathbb{R}[[x]]^A$ and

$$(\mathcal{A}f \circ g)(x) = f'(g(x))(\mathcal{A}g)(x) + e^{A\frac{g(x)-x}{\chi g(x)}}(\mathcal{A}f)(g(x))$$

- $\Rightarrow \mathbb{R}[[x]]^A$ is closed under composition and inversion.
- \Rightarrow We can solve for asymptotics of implicitly defined power series.

Example: Simple permutations

A non-simple permutation:

A permutation π of [n] = {1,...,n} is called simple if there is no (non-trivial) interval [i, j] = {i,...,j} such that π([i, j]) is another interval. ('Rooted dinner party permutations')

Example: Simple permutations

A non-simple permutation:

- A permutation π of [n] = {1,..., n} is called simple if there is no (non-trivial) interval [i, j] = {i,...,j} such that π([i, j]) is another interval. ('Rooted dinner party permutations')
- The OGF S(x) of simple permutations fulfills

$$\frac{F(x) - F(x)^2}{1 + F(x)} = x + S(F(x)),$$

with $F(x) = \sum_{n=1}^{\infty} n! x^n$ [Albert, Klazar, and Atkinson, 2003].
$$\frac{F(x) - F(x)^2}{1 + F(x)} = x + S(F(x)).$$

$$\frac{F(x) - F(x)^2}{1 + F(x)} = x + S(F(x)).$$

By definition: $F \in \mathbb{R}[[x]]^1$ and $(\mathcal{A} F)(x) = \frac{1}{x}$.

$$\frac{F(x) - F(x)^2}{1 + F(x)} = x + S(F(x)).$$

- By definition: $F \in \mathbb{R}[[x]]^1$ and $(\mathcal{A} F)(x) = \frac{1}{x}$.
- Extract asymptotics by applying the *A*-derivative:

$$\mathcal{A}\left(\frac{F(x)-F(x)^2}{1+F(x)}\right)=\mathcal{A}\left(x+S(F(x))\right).$$

$$\frac{F(x) - F(x)^2}{1 + F(x)} = x + S(F(x)).$$

- By definition: $F \in \mathbb{R}[[x]]^1$ and $(\mathcal{A} F)(x) = \frac{1}{x}$.
- Extract asymptotics by applying the *A*-derivative:

$$\mathcal{A}\left(\frac{F(x)-F(x)^2}{1+F(x)}\right)=\mathcal{A}\left(x+S(F(x))\right).$$

Apply chain rule on both sides

$$\frac{1-2F(x)-F(x)^2}{(1+F(x))^2}(\mathcal{A}F)(x) = S'(F(x))(\mathcal{A}F)(x) + \left(\frac{x}{F(x)}\right)^1 e^{\frac{F(x)-x}{xF(x)}}(\mathcal{A}S)(F(x)),$$

which can be solved for $(\mathcal{A} S)(x)$.

• After simplifications:

$$(\mathcal{A}S)(x) = \frac{1}{x} \frac{1}{1+x} \frac{1-x-(1+x)\frac{S(x)}{x}}{1+(1+x)\frac{S(x)}{x^2}} e^{-\frac{2+(1+x)\frac{S(x)}{x^2}}{1-x-(1+x)\frac{S(x)}{x}}}$$

After simplifications:

$$(\mathcal{A}S)(x) = \frac{1}{x} \frac{1}{1+x} \frac{1-x-(1+x)\frac{S(x)}{x}}{1+(1+x)\frac{S(x)}{x^2}} e^{-\frac{2+(1+x)\frac{S(x)}{x^2}}{1-x-(1+x)\frac{S(x)}{x}}}$$

• We get the full asymptotic expansion for *S*:

$$[x^n]S(x) = \sum_{k=0}^{R-1} c_k(n-k)! + \mathcal{O}((n-R)!) \qquad \forall R \in \mathbb{N}_0$$

where $c_k = [x^k](\mathcal{A} S)(x)$.

After simplifications:

$$(\mathcal{A}S)(x) = \frac{1}{x} \frac{1}{1+x} \frac{1-x-(1+x)\frac{S(x)}{x}}{1+(1+x)\frac{S(x)}{x^2}} e^{-\frac{2+(1+x)\frac{S(x)}{x^2}}{1-x-(1+x)\frac{S(x)}{x}}}$$

• We get the full asymptotic expansion for *S*:

$$[x^n]S(x) = \sum_{k=0}^{R-1} c_k(n-k)! + \mathcal{O}((n-R)!) \qquad \forall R \in \mathbb{N}_0$$

where $c_k = [x^k](A S)(x)$.

$$[x^n]S(x) = e^{-2}n! \left(1 - \frac{4}{n} + \frac{2}{n(n-1)} - \frac{40}{3n(n-1)(n-2)} + \ldots\right),$$

the first three coefficients have been obtained by Albert, Klazar, and Atkinson [2003].

 Allows to extract explicit asymptotic information from implicitly given power series.

Direct combinatorial applications

- Allows to extract explicit asymptotic information from implicitly given power series.
- Combinatorial applications include permutations MB [2016a], chord diagrams Courtiel, Yeats, and Zeilberger [2016] and graphs.

Direct combinatorial applications

- Allows to extract explicit asymptotic information from implicitly given power series.
- Combinatorial applications include permutations MB [2016a], chord diagrams Courtiel, Yeats, and Zeilberger [2016] and graphs.
- Necessary to obtain all order asymptotics from renormalized quantities:

 $f(\alpha) \to f(\alpha(\alpha_{\mathsf{ren}}))$

Direct combinatorial applications

- Allows to extract explicit asymptotic information from implicitly given power series.
- Combinatorial applications include permutations MB [2016a], chord diagrams Courtiel, Yeats, and Zeilberger [2016] and graphs.
- Necessary to obtain all order asymptotics from renormalized quantities:

 $f(\alpha) \to f(\alpha(\alpha_{\mathsf{ren}}))$

3. Renormalization

Hopf algebra of graphs

3. Renormalization

Hopf algebra of graphs

 Hopf algebraic approach based on the works of connes and Kreimer [2001], Kreimer and Yeats [2006], van Suijlekom [2007]. 3. Renormalization

Hopf algebra of graphs

- Hopf algebraic approach based on the works of connes and Kreimer [2001], Kreimer and Yeats [2006], van Suijlekom [2007].
- Generalized to allow arbitrary graphs.

• Starting point is to equip \mathcal{G} with a **coproduct**:

where the sum is over **any** subgraphs of Γ .

• Starting point is to equip \mathcal{G} with a **coproduct**:

$$\begin{array}{ccccc} \Delta : & \mathcal{G} & \to & \mathcal{G} \otimes \mathcal{G} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

where the sum is over \mbox{any} subgraphs of $\Gamma.$ Example:

$$\Delta \bigoplus = \sum_{\gamma \subset \bigodot} \gamma \otimes \bigoplus / \gamma = \checkmark^2 \otimes \bigoplus + \bigoplus \otimes \bullet$$
$$+ 3 \rightarrowtail \otimes \bigoplus + 3 \multimap \bigcirc \bigcirc \bigcirc$$

Hopf ideals in \mathcal{G} MB [2018 PhD thesis]

A given set of graphs \mathfrak{P} , which is **closed under insertion and contraction of subgraphs** corresponds to a **Hopf ideal** $h_{\mathfrak{P}}$ of \mathcal{G} .

Hopf ideals in \mathcal{G} MB [2018 PhD thesis]

A given set of graphs \mathfrak{P} , which is **closed under insertion and contraction of subgraphs** corresponds to a **Hopf ideal** $k_{\mathfrak{P}}$ of \mathcal{G} .

 The quotient of G/l_p with respect of one of these ideals is the Connes-Kreimer Hopf algebra. The coproduct gives rise to a group structure Φ^G_A on the set of all algebra homomorphisms.

- The coproduct gives rise to a group structure Φ^G_A on the set of all algebra homomorphisms.
- If ϕ and ψ are algebra homomorphisms $\mathcal{G} \to \mathbb{A}$, then

$$\phi \star \psi = m \circ (\phi \otimes \psi) \circ \Delta$$

is another algebra homomorphism.

- The coproduct gives rise to a group structure Φ^G_A on the set of all algebra homomorphisms.
- If ϕ and ψ are algebra homomorphisms $\mathcal{G} \to \mathbb{A}$, then

$$\phi \star \psi = m \circ (\phi \otimes \psi) \circ \Delta$$

is another algebra homomorphism.

Every ideal *k*_β gives rise to another group Φ^{G/k_β}_A which acts on Φ^G_A.

The inverse φ^{⋆−1} of φ ∈ Φ^G_A may be analysed using the inclusion poset of subgraphs.

- The inverse φ^{⋆−1} of φ ∈ Φ^G_A may be analysed using the inclusion poset of subgraphs.
- In physical QFTs these posets turn out to be algebraic lattices MB [2016b].

- The inverse φ^{*−1} of φ ∈ Φ^G_A may be analysed using the inclusion poset of subgraphs.
- In physical QFTs these posets turn out to be algebraic lattices MB [2016b].
- Quotients $G/I_{\mathfrak{P}}$ give rise to annihilation mappings,

$$\zeta^{\star-1}|_{\mathfrak{P}} \star \zeta(\Gamma) = \begin{cases} 1 & \text{ if } \Gamma \text{ does not contain a subgraph from } \mathfrak{P}. \\ 0 & \text{ else} \end{cases}$$

where ζ is the characteristic map $\zeta : \Gamma \mapsto 1$.

- The inverse φ^{*−1} of φ ∈ Φ^G_A may be analysed using the inclusion poset of subgraphs.
- In physical QFTs these posets turn out to be algebraic lattices MB [2016b].
- Quotients $\mathcal{G}/l_{\mathfrak{P}}$ give rise to annihilation mappings,

$$\zeta^{\star-1}|_{\mathfrak{P}} \star \zeta(\Gamma) = \begin{cases} 1 & \text{ if } \Gamma \text{ does not contain a subgraph from } \mathfrak{P}. \\ 0 & \text{ else} \end{cases}$$

where ζ is the characteristic map $\zeta: \Gamma \mapsto 1$.

 These maps allow us to obtain generating functions of graphs without subgraphs in P. • We have an identity on ${\cal G}$ Kreimer [2006], van Suijlekom [2007], Yeats [2008]

$$\Delta \mathfrak{X} = \sum_{\Gamma} \prod_{\nu \in V_{\Gamma}} (d_{\Gamma}^{(\nu)}!) \mathfrak{X}^{(\nu)} \otimes \frac{\Gamma}{|\operatorname{Aut} \Gamma|},$$

where $\mathfrak{X} = \sum_{\Gamma} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}$ and $\mathfrak{X}^{(\nu)} := \sum_{\operatorname{res} \Gamma = \nu} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}$.

■ We have an identity on $\mathcal G$ Kreimer [2006], van Suijlekom [2007], Yeats [2008]

$$\Delta \mathfrak{X} = \sum_{\Gamma} \prod_{v \in V_{\Gamma}} (d_{\Gamma}^{(v)}!) \mathfrak{X}^{(v)} \otimes rac{\Gamma}{|\operatorname{\mathsf{Aut}} \Gamma|},$$

where $\mathfrak{X} = \sum_{\Gamma} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}$ and $\mathfrak{X}^{(\nu)} := \sum_{\operatorname{res} \Gamma = \nu} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}$.

 Allows the explicit evaluation of products of algebra homomorphisms in the combinatorial case,

$$\zeta^{\star-1}|_{\mathfrak{P}} \star \phi(\mathfrak{X}) = \int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar} \left(-\frac{x^2}{2} + \sum_{k \ge 0} \zeta^{\star-1}|_{\mathfrak{P}}(\mathfrak{X}^{(v_k)}) \frac{x^k}{k!}\right)}$$

The generating function of graphs without subgraphs in \mathfrak{P} .

We have an identity on ${\cal G}$ Kreimer [2006], van Suijlekom [2007], Yeats [2008]

$$\Delta \mathfrak{X} = \sum_{\Gamma} \prod_{\nu \in V_{\Gamma}} (d_{\Gamma}^{(\nu)}!) \mathfrak{X}^{(\nu)} \otimes \frac{\Gamma}{|\operatorname{Aut} \Gamma|},$$

where $\mathfrak{X} = \sum_{\Gamma} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}$ and $\mathfrak{X}^{(\nu)} := \sum_{\operatorname{res} \Gamma = \nu} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}$.

 Allows the explicit evaluation of products of algebra homomorphisms in the combinatorial case,

$$\zeta^{\star-1}|_{\mathfrak{P}} \star \phi(\mathfrak{X}) = \int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar} \left(-\frac{x^2}{2} + \sum_{k \ge 0} \zeta^{\star-1}|_{\mathfrak{P}}(\mathfrak{X}^{(v_k)})\frac{x^k}{k!}\right)}$$

The generating function of graphs without subgraphs in \mathfrak{P} . The factors $\zeta^{\star-1}|_{\mathfrak{P}}(\mathfrak{X}^{(\nu)})$ are the 'counterterms'. We have an identity on ${\cal G}$ Kreimer [2006], van Suijlekom [2007], Yeats [2008]

$$\Delta \mathfrak{X} = \sum_{\Gamma} \prod_{\nu \in V_{\Gamma}} (d_{\Gamma}^{(\nu)}!) \mathfrak{X}^{(\nu)} \otimes \frac{\Gamma}{|\operatorname{Aut} \Gamma|},$$

where $\mathfrak{X} = \sum_{\Gamma} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}$ and $\mathfrak{X}^{(\nu)} := \sum_{\operatorname{res} \Gamma = \nu} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}$.

 Allows the explicit evaluation of products of algebra homomorphisms in the combinatorial case,

$$\zeta^{\star-1}|_{\mathfrak{P}} \star \phi(\mathfrak{X}) = \int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar} \left(-\frac{x^2}{2} + \sum_{k \ge 0} \zeta^{\star-1}|_{\mathfrak{P}}(\mathfrak{X}^{(v_k)}) \frac{x^k}{k!}\right)}$$

The generating function of graphs without subgraphs in \mathfrak{P} .

- The factors $\zeta^{\star-1}|_{\mathfrak{P}}(\mathfrak{X}^{(v)})$ are the 'counterterms'.
- Explicit asymptotics can be obtained in the ring of factorially divergent power series.

Counting subgraph restricted graphs

Let f_m be the generating function of all graphs m with marked degrees

$$f_{\mathfrak{M}}(\lambda_{0},\lambda_{1},\lambda_{2},\ldots)=\sum_{\Gamma\in\mathfrak{M}}\frac{\prod_{\nu\in\mathcal{V}_{\Gamma}}\lambda_{d_{\Gamma}^{(\nu)}}}{|\operatorname{Aut}\Gamma|}=\int_{\mathbb{R}}\frac{dx}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}+\sum_{k\geq0}\lambda_{k}\frac{x^{k}}{k!}}$$

Counting subgraph restricted graphs

Let f_m be the generating function of all graphs m with marked degrees

$$f_{\mathfrak{M}}(\lambda_{0},\lambda_{1},\lambda_{2},\ldots)=\sum_{\Gamma\in\mathfrak{M}}\frac{\prod_{\nu\in V_{\Gamma}}\lambda_{d_{\Gamma}^{(\nu)}}}{|\operatorname{Aut}\Gamma|}=\int_{\mathbb{R}}\frac{dx}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}+\sum_{k\geq0}\lambda_{k}\frac{x^{k}}{k!}}$$

We can write this generating function as an image of an algebra homomorphism

$$sk_{\lambda} \star \zeta(\mathfrak{X}) = f_{\mathfrak{M}}(\lambda_0, \lambda_1, \lambda_2, \ldots),$$

where $\zeta : \Gamma \mapsto 1$ is a characteristic map and

Counting subgraph restricted graphs

Let f_m be the generating function of all graphs m with marked degrees

$$f_{\mathfrak{M}}(\lambda_{0},\lambda_{1},\lambda_{2},\ldots)=\sum_{\Gamma\in\mathfrak{M}}\frac{\prod_{\nu\in\mathcal{V}_{\Gamma}}\lambda_{d_{\Gamma}^{(\nu)}}}{|\operatorname{Aut}\Gamma|}=\int_{\mathbb{R}}\frac{dx}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}+\sum_{k\geq0}\lambda_{k}\frac{x^{k}}{k!}}$$

We can write this generating function as an image of an algebra homomorphism

$$sk_{\lambda} \star \zeta(\mathfrak{X}) = f_{\mathfrak{M}}(\lambda_0, \lambda_1, \lambda_2, \ldots),$$

where $\zeta : \Gamma \mapsto 1$ is a characteristic map and

$$sk_{\lambda}: \Gamma \mapsto \begin{cases} \prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}} & \text{if } \Gamma \text{ has no edges} \\ 0 & \text{else} \end{cases}$$

Using the modified algebra homomorphism,

$$sk_{\lambda} \star (\zeta^{\star-1}|_{\mathfrak{P}} \star \zeta)(\mathfrak{X}) = \sum_{\substack{\Gamma \in \mathfrak{M} \\ \text{s.t. } \Gamma \text{ has no subgraphs from } \mathfrak{P}} \frac{\prod_{\nu \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(\nu)}}}{|\operatorname{Aut} \Gamma|}$$

Using the modified algebra homomorphism,

$$sk_{\lambda} \star \left(\zeta^{\star - 1} |_{\mathfrak{P}} \star \zeta \right) (\mathfrak{X}) = \sum_{\substack{\Gamma \in \mathfrak{M} \\ \text{s.t. } \Gamma \text{ has no subgraphs from } \mathfrak{P}} \frac{\prod_{v \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(v)}}}{|\operatorname{Aut} \Gamma|}$$

gives the generating function

$$=: f_{\mathfrak{M}/\mathfrak{P}}(\lambda_0, \lambda_1, \dots)$$

of all graphs without subgraphs from \mathfrak{P} .

•

By using the factorization formula for the coproduct:

$$f_{\mathfrak{M}/\mathfrak{P}}(\lambda_{0},\lambda_{1},\dots)=\mathsf{sk}_{oldsymbol{\lambda}}\star\left(\zeta^{\star-1}ert_{\mathfrak{P}}\star\,\zeta
ight)(\mathfrak{X})$$
By using the factorization formula for the coproduct:

$$f_{\mathfrak{M}/\mathfrak{P}}(\lambda_{0},\lambda_{1},\ldots) = sk_{\lambda} \star (\zeta^{\star-1}|_{\mathfrak{P}} \star \zeta)(\mathfrak{X})$$
$$= (sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}) \star \zeta(\mathfrak{X}) = \sum_{\Gamma \in \mathfrak{M}} \prod_{\nu \in V_{\Gamma}} \frac{(d_{\Gamma}^{(\nu)}!)sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}(\mathfrak{X}^{(\nu)})}{|\operatorname{Aut} \Gamma|}$$

By using the factorization formula for the coproduct:

$$\begin{split} f_{\mathfrak{M}/\mathfrak{P}}(\lambda_{0},\lambda_{1},\ldots) &= sk_{\lambda} \star \left(\zeta^{\star-1}|_{\mathfrak{P}} \star \zeta\right)(\mathfrak{X}) \\ &= \left(sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\right) \star \zeta\left(\mathfrak{X}\right) = \sum_{\Gamma \in \mathfrak{M}} \prod_{\nu \in V_{\Gamma}} \frac{\left(d_{\Gamma}^{(\nu)}!\right)sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\left(\mathfrak{X}^{(\nu)}\right)}{|\operatorname{Aut} \Gamma|} \\ &= f_{\mathfrak{M}}\left((0!)sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\left(\mathfrak{X}^{(0)}\right), (1!)sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\left(\mathfrak{X}^{(1)}\right), \ldots\right) \end{split}$$

By using the factorization formula for the coproduct:

$$\begin{split} f_{\mathfrak{M}/\mathfrak{P}}(\lambda_{0},\lambda_{1},\ldots) &= sk_{\lambda} \star \left(\zeta^{\star-1}|_{\mathfrak{P}} \star \zeta\right)(\mathfrak{X}) \\ &= \left(sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\right) \star \zeta\left(\mathfrak{X}\right) = \sum_{\Gamma \in \mathfrak{M}} \prod_{\nu \in V_{\Gamma}} \frac{\left(d_{\Gamma}^{(\nu)}!\right)sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\left(\mathfrak{X}^{(\nu)}\right)}{|\operatorname{Aut} \Gamma|} \\ &= f_{\mathfrak{M}}\left((0!)sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\left(\mathfrak{X}^{(0)}\right), (1!)sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\left(\mathfrak{X}^{(1)}\right), \ldots\right) \end{split}$$

where we expressed $f_{\mathfrak{M}/\mathfrak{P}}(\lambda_0, \lambda_1, ...)$ as a generalized composition of $f_{\mathfrak{M}}$ and $sk_{\lambda} \star \zeta^{\star - 1}|_{\mathfrak{P}}(\mathfrak{X}^{(k)})$.

More explicitly

$$f_{\mathfrak{M}/\mathfrak{P}}(\lambda_0,\lambda_1,\ldots) = f_{\mathfrak{M}}\left((0!)g^0_{\mathfrak{P}}(\lambda_0,\ldots),(1!)g^1_{\mathfrak{P}}(\lambda_0,\ldots),\ldots\right)$$

More explicitly

$$f_{\mathfrak{M}/\mathfrak{P}}(\lambda_0,\lambda_1,\ldots) = f_{\mathfrak{M}}\left((0!)g_{\mathfrak{P}}^0(\lambda_0,\ldots),(1!)g_{\mathfrak{P}}^1(\lambda_0,\ldots),\ldots\right)$$

where

More explicitly

$$f_{\mathfrak{M}/\mathfrak{P}}(\lambda_0,\lambda_1,\ldots) = f_{\mathfrak{M}}\left((0!)g^0_{\mathfrak{P}}(\lambda_0,\ldots),(1!)g^1_{\mathfrak{P}}(\lambda_0,\ldots),\ldots\right)$$

where

$$g_{\mathfrak{P}}^{k}(\lambda_{0},\lambda_{1},\ldots) = sk_{\lambda} \star \zeta^{\star-1}|_{\mathfrak{P}}\left(\mathfrak{X}^{(k)}\right)$$
$$= \sum_{\substack{\Gamma \in \mathfrak{P} \\ \Gamma \text{ cntd. with } k \text{ legs}}} \zeta^{\star-1}|_{\mathfrak{P}}(\Gamma) \frac{\prod_{\nu \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(\nu)}}}{|\operatorname{Aut} \Gamma|}$$

and $\zeta^{\star-1}|_{\mathfrak{P}}(\Gamma)$ can be expressed as a Moebius function,

$$\zeta^{\star-1}|_{\mathfrak{P}}(\mathsf{\Gamma}) = -1 - \sum_{\substack{\gamma \subseteq \mathsf{\Gamma} \\ \gamma \in \mathfrak{P}}} \zeta^{\star-1}|_{\mathfrak{P}}(\gamma)$$

• Set $\mathfrak{P}_{\rightarrow}$ to the set of all graphs with one leg, for instance $-\bigcirc$.

- Set $\mathfrak{P}_{\rightarrow}$ to the set of all graphs with one leg, for instance –().
- Clearly, this set is closed under contraction and insertion of subgraphs.

- Set $\mathfrak{P}_{\rightarrow}$ to the set of all graphs with one leg, for instance –().
- Clearly, this set is closed under contraction and insertion of subgraphs.
- The set $\mathfrak{M}/\mathfrak{P}_{\bullet}$ of graphs without subgraphs from \mathfrak{P}_{\bullet} is the set of bridgeless graphs.

- Set $\mathfrak{P}_{\rightarrow}$ to the set of all graphs with one leg, for instance –().
- Clearly, this set is closed under contraction and insertion of subgraphs.
- The set $\mathfrak{M}/\mathfrak{P}_{\bullet}$ of graphs without subgraphs from \mathfrak{P}_{\bullet} is the set of bridgeless graphs.
- Using our results,

$$\begin{split} f_{\mathfrak{M}/\mathfrak{P}_{\bullet}}\left(\lambda_{0},\lambda_{1},\ldots\right) &= f_{\mathfrak{M}}\left((0!)g_{\mathfrak{P}_{\bullet}}^{0}\left(\lambda_{0},\ldots\right),(1!)g_{\mathfrak{P}_{\bullet}}^{1}\left(\lambda_{0},\ldots\right),\ldots\right)\\ \text{where now }g_{\mathfrak{P}_{\bullet}}^{k}\left(\lambda_{0},\ldots\right) &= \frac{\lambda_{k}}{k!} \text{ for all } k \neq 1. \end{split}$$

- Set $\mathfrak{P}_{\rightarrow}$ to the set of all graphs with one leg, for instance –().
- Clearly, this set is closed under contraction and insertion of subgraphs.
- The set $\mathfrak{M}/\mathfrak{P}_{\bullet}$ of graphs without subgraphs from \mathfrak{P}_{\bullet} is the set of bridgeless graphs.
- Using our results,

$$f_{\mathfrak{M}/\mathfrak{P}_{\bullet}}(\lambda_{0},\lambda_{1},\ldots) = f_{\mathfrak{M}}\left((0!)g_{\mathfrak{P}_{\bullet}}^{0}(\lambda_{0},\ldots),(1!)g_{\mathfrak{P}_{\bullet}}^{1}(\lambda_{0},\ldots),\ldots\right)$$

where now $g_{\mathfrak{P}_{\bullet}}^{k}(\lambda_{0},\ldots) = \frac{\lambda_{k}}{k!}$ for all $k \neq 1$.

Moreover, by analysing the Moebius function we find that

$$g_{\mathfrak{P}_{-\bullet}}^{1}(\lambda_{0},\ldots) = -\sum_{\substack{\Gamma \in \mathfrak{P}_{-\bullet}\\ \text{s.t. } \Gamma \text{ is 1Pl}}} \frac{\prod_{\nu \in V_{\Gamma}} \lambda_{d_{\Gamma}^{(\nu)}}}{|\operatorname{Aut} \Gamma|}$$

Hopf algebra of graphs

Applications to restricted graph counting Generating functions of subgraph restricted families of graphs can be obtained.

Applications to restricted graph counting

- Generating functions of subgraph restricted families of graphs can be obtained.
- Feynman rules for physical theories carry additional structures MB [2016b].

Applications to restricted graph counting

- Generating functions of subgraph restricted families of graphs can be obtained.
- Feynman rules for physical theories carry additional structures MB [2016b].
- Hopf algebraic interpretation of the Legendre transformation in QFT MB [2018 PhD thesis].

4. Application

Zero-dimensional toy models and diagram counting

 Both Hopf algebra and factorially divergent power series may be used to study zero-dimensional QFT explicitly.

4. Application

Zero-dimensional toy models and diagram counting

- Both Hopf algebra and factorially divergent power series may be used to study zero-dimensional QFT explicitly.
- All-order generating functions for asymptotics of renormalization quantities can be obtained. MB [2017]

4. Application

Zero-dimensional toy models and diagram counting

- Both Hopf algebra and factorially divergent power series may be used to study zero-dimensional QFT explicitly.
- All-order generating functions for asymptotics of renormalization quantities can be obtained. MB [2017]
- The densities of primitive diagrams can be computed.

 \blacksquare The generating function of φ^4 primitives is

$$p(\hbar_{\text{ren}}) = 1 - z^{(\times)}(\hbar_{\text{ren}}) + 3\sum_{n \ge 2} (-1)^n \left(\frac{\hbar_{\text{ren}}}{2}\right)^n$$

which can be proven using the algebraic lattice structure of Feynman diagrams $_{\text{MB}}$ $_{\text{[2016b]}}$

 \blacksquare The generating function of φ^4 primitives is

$$p(\hbar_{\text{ren}}) = 1 - z^{(\mathbf{X})}(\hbar_{\text{ren}}) + 3\sum_{n \ge 2} (-1)^n \left(\frac{\hbar_{\text{ren}}}{2}\right)^n$$

which can be proven using the algebraic lattice structure of Feynman diagrams $_{\text{MB}}$ $_{\text{[2016b]}}$

The asymptotics of this quantity can be obtained using the ring of factorially divergent power series MB [2017]:

$$[\hbar_{\rm ren}^n] p(\hbar_{\rm ren}) \sim_{n \to \infty} \frac{e^{-\frac{15}{4}}}{\sqrt{2\pi}} \left(\frac{2}{3}\right)^{n+3} \Gamma(n+3) \left(36+\frac{3}{2}\frac{243}{2}\frac{1}{n+2} + \left(\frac{3}{2}\right)^2 \frac{729}{32}\frac{1}{(n+1)(n+2)} + \dots \right)$$

 \blacksquare The generating function of $\varphi^{\rm 4}$ primitives is

$$p(\hbar_{\text{ren}}) = 1 - z^{(\times)}(\hbar_{\text{ren}}) + 3\sum_{n \ge 2} (-1)^n \left(\frac{\hbar_{\text{ren}}}{2}\right)^n$$

which can be proven using the algebraic lattice structure of Feynman diagrams $_{\text{MB}}$ $_{\text{[2016b]}}$

The asymptotics of this quantity can be obtained using the ring of factorially divergent power series MB [2017]:

$$[\hbar_{\rm ren}^n] p(\hbar_{\rm ren}) \sim_{n \to \infty} \frac{e^{-\frac{15}{4}}}{\sqrt{2\pi}} \left(\frac{2}{3}\right)^{n+3} \Gamma(n+3) \left(36+\frac{3}{2}\frac{243}{2}\frac{1}{n+2} + \left(\frac{3}{2}\right)^2 \frac{729}{32}\frac{1}{(n+1)(n+2)} + \dots \right)$$

Which can be compared with the expansion of the φ⁴ β-function κ_{ompaniets and Panzer [2017]}, where asymptotically only primitives are expected to contribute. Similarly, the number of primitives in quenched QED:

$$1-z^{(w_{h})}(\hbar_{ren})$$

Similarly, the number of primitives in quenched QED:

$$1-z^{\left(rac{m_{k}}{k}
ight)}(\hbar_{\mathsf{ren}})$$

The asymptotics can again be calculated to arbitrary order,

$$\begin{split} & [\hbar_{\rm ren}^n](1-z^{\left(\mathsf{w}^{\mathbf{z}}_{h}\right)}(\hbar_{\rm ren})) \underset{n\to\infty}{\sim} e^{-2}(2n+1)!! \left(1-\frac{6}{2n+1}\right. \\ & -\frac{4}{(2n-1)(2n+1)} - \frac{218}{3} \frac{1}{(2n-3)(2n-1)(2n+1)} + \ldots \right). \end{split}$$

Similarly, the number of primitives in quenched QED:

$$1-z^{\left(rac{m_{k}}{k}
ight)}(\hbar_{\mathsf{ren}})$$

The asymptotics can again be calculated to arbitrary order,

$$[\hbar_{\rm ren}^n](1-z^{\left(\mathsf{w}_{\mathsf{k}}^{\mathsf{d}}\right)}(\hbar_{\rm ren})) \underset{n\to\infty}{\sim} e^{-2}(2n+1)!! \left(1-\frac{6}{2n+1}-\frac{4}{(2n-1)(2n+1)}-\frac{218}{3}\frac{1}{(2n-3)(2n-1)(2n+1)}+\ldots\right).$$

MB [2017] which resolves a question by David Broadhurst and Freeman Dyson.

- MH Albert, M Klazar, and MD Atkinson. The enumeration of simple permutations. 2003.
- EN Argyres, AFW van Hameren, RHP Kleiss, and CG Papadopoulos. Zero-dimensional field theory. *The European Physical Journal C-Particles and Fields*, 19(3):567–582, 2001.
- G Başar, GV Dunne, and M Ünsal. Resurgence theory, ghost-instantons, and analytic continuation of path integrals. *Journal of High Energy Physics*, 2013(10), 2013.
- CM Bender and TT Wu. Anharmonic oscillator. *Phys. Rev.*, 184: 1231–1260, 1969.
- EA Bender. An asymptotic expansion for the coefficients of some formal power series. *Journal of the London Mathematical Society*, 2(3):451–458, 1975.
- E Brezin, JC Le Guillou, and Jean Zinn-Justin. Perturbation theory at large order. i. the φ 2 n interaction. *Physical Review D*, 15 (6):1544, 1977.

Louis Comtet. Sur les coefficients de l'inverse de la série formelle $\sum n! t^n$. CR Acad. Sci. Paris, Ser. A, 275(1):972, 1972.

- A Connes and D Kreimer. Renormalization in quantum field theory and the Riemann–Hilbert problem II: The β -function, diffeomorphisms and the renormalization group. *Communications in Mathematical Physics*, 216(1):215–241, 2001.
- J Courtiel, K Yeats, and N Zeilberger. Connected chord diagrams and bridgeless maps. *arXiv preprint arXiv:1611.04611*, 2016.
- P Cvitanović, B Lautrup, and RB Pearson. Number and weights of Feynman diagrams. *Phys. Rev. D*, 18:1939–1949, 1978.
- FJ Dyson. Divergence of perturbation theory in quantum electrodynamics. *Phys. Rev.*, 85:631–632, 1952.
- J Écalle. Les fonctions résurgentes. *Publ. math. d'Orsay/Univ. de Paris, Dep. de math.*, 1981.
- RP Feynman. The theory of positrons. *Physical Review*, 76(6):749, 1949.
- CA Hurst. The enumeration of graphs in the Feynman-Dyson technique. In *Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*, volume 214, pages 44–61. The Royal Society, 1952.

- MV Kompaniets and E Panzer. Minimally subtracted six-loop renormalization of o(n)-symmetric ϕ^4 theory and critical exponents. *Phys. Rev. D*, 96:036016, 2017.
- D Kreimer. Anatomy of a gauge theory. *Annals of Physics*, 321 (12):2757–2781, 2006.
- D Kreimer and K Yeats. An étude in non-linear dyson schwinger equations. *Nuclear Physics B Proceedings Supplements*, 160: 116–121, 2006.
- LN Lipatov. Divergence of the perturbation theory series and the quasiclassical theory. *Sov. Phys. JETP*, 45(2):216–223, 1977.
- MB. Generating asymptotics for factorially divergent sequences. *arXiv preprint arXiv:1603.01236*, 2016a.
- MB. Algebraic lattices in QFT renormalization. *Letters in Mathematical Physics*, 106(7):879–911, 2016b.
- MB. Renormalized asymptotic enumeration of feynman diagrams. *Annals of Physics*, 385:95–135, 2017.
- MB. Graphs in perturbation theory: Algebraic structure and asymptotics. 2018 PhD thesis.

- AJ McKane and DJ Wallace. Instanton calculations using dimensional regularisation. *Journal of Physics A: Mathematical and General*, 11(11):2285, 1978.
- AJ McKane, DJ Wallace, and DF de Alcantara Bonfim. Non-perturbative renormalisation using dimensional regularisation: applications to the epsilon expansion. *Journal of Physics A: Mathematical and General*, 17(9):1861, 1984.
- G t'Hooft. The whys of subnuclear physics. In *Proceedings of the international school of subnuclear physics, Erice*, pages 943–971, 1979.
- WD van Suijlekom. Renormalization of gauge fields: A Hopf algebra approach. *Communications in Mathematical Physics*, 276(3):773–798, 2007.
- K Yeats. *Growth estimates for Dyson–Schwinger equations*. PhD thesis, Boston University, 2008.