# Asymptotic Calculus for Combinatorial Dyson-Schwinger Equations 

Michael Borinsky ${ }^{1}$

Humboldt-University Berlin
Departments of Physics and Mathematics
Resurgence in Gauge and String Theories, July 2016

[^0]
## Motivation

■ For most systems, perturbation theory is necessary to compute physical quantities.

- Often the perturbation expansions turn out to have vanishing radius of convergence!
- Many of the expansions diverge factorially, i.e. $a_{n} \approx C A^{n} \Gamma(n+\beta)$ for large $n$.
- These expansions often have a combinatorial interpretation.
$\Rightarrow$ Analyse factorially divergent power series from a combinatorial perspective.
- Treat factorially divergent power series analogous to the powerful framework of analytic combinatorics. Flajolet and Sedgewick [2009]
- Suppose a power series behaves asymptotically as $A^{n} \Gamma(n+\beta)$ in contrast to, e.g. $e^{n^{2}}, \Gamma(\sqrt{n}+\beta), \Gamma(n+\beta)^{2}$, etc.
■ In the $A^{n} \Gamma(n+\beta)$ case, knowledge of the asymptotic behaviour of one observable is enough to obtain knowledge of the asymptotic behaviour of all derived quantities.
- This can be made quantitative by studying the ring of factorially divergent power series.


## Factorially divergent power series

- Consider the class of formal power series $\mathbb{R}[[x]]_{\beta}^{\alpha} \subset \mathbb{R}[[x]]$ which admit an asymptotic expansion for large $n$ of the form,

$$
f_{n}=\alpha^{n+\beta} \Gamma(n+\beta)\left(c_{0}+\frac{c_{1}}{n+\beta}+\frac{c_{2}}{(n+\beta)(n+\beta-1)}+\ldots\right)
$$

including power series with

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{f_{n}}{\alpha^{n} \Gamma(n+\beta)}=0 \\
& \Rightarrow c_{k}=0 \text { for all } k \geq 0
\end{aligned}
$$

■ Note, that the type of the asymptotic expansion is heavily restricted!

- Consider a power series $f(x) \in \mathbb{R}[[x]]_{\beta}^{\alpha}$ for large $n$ :

$$
f_{n}=\alpha^{n+\beta} \Gamma(n+\beta)\left(c_{0}+\frac{c_{1}}{n+\beta}+\frac{c_{2}}{(n+\beta)(n+\beta-1)}+\ldots\right)
$$

■ Idea: Interpret the coefficients $c_{k}$ of the asymptotic expansion as a new power series.

## Definition

$\mathcal{A}$ maps a power series to its asymptotic expansion:
$\mathcal{A}$
$\mathbb{R}[[x]]_{\beta}^{\alpha}$
.
$\mathbb{R}[[x]]$
$f(x)$
$\mapsto \quad \gamma(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$

## Theorem 1

$\mathcal{A}$ is a derivation on $\mathbb{R}[[x]]_{\beta}^{\alpha}$ :

$$
(\mathcal{A} f \cdot g)(x)=f(x)(\mathcal{A} g)(x)+(\mathcal{A} f)(x) g(x)
$$

- Follows from the log-convexity of $\Gamma$.
$\Rightarrow \mathbb{R}[[x]]_{\beta}^{\alpha}$ is a subring of $\mathbb{R}[[x]]$.


## Proof sketch

With $h(x)=f(x) g(x)$,

$$
h_{n}=\underbrace{\sum_{k=0}^{R-1} f_{n-k} g_{k}+\sum_{k=0}^{R-1} f_{k} g_{n-k}}_{\text {High order times low order }}+\underbrace{\sum_{k=R}^{n-R} f_{k} g_{n-k}}_{\mathcal{O}\left(\alpha^{n} \Gamma(n+\beta-R)\right)}
$$

■ What happens for composition of power series $\in \mathbb{R}[[x]]_{\beta}^{\alpha}$ ?

## Theorem 2 Bender [1975]

If $\left|f_{n}\right| \leq C^{n}$ then, for $g \in \mathbb{R}[[x]]_{\beta}^{\alpha}$ with $g_{0}=0$ :

$$
\begin{gathered}
f \circ g \in \mathbb{R}[[x]]_{\beta}^{\alpha} \\
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)
\end{gathered}
$$

- Bender considered much more general power series, but this is a direct corollary of his theorem in 1975.


## Theorem 3 MB [2016a]

More general for $f \in \mathbb{R}\left\{y_{1}, \ldots, y_{L}\right\}$ and $g^{1}, \ldots, g^{L} \in \mathbb{R}[[x]]_{\beta}^{\alpha}$ :

$$
\begin{gathered}
\left(\mathcal{A}\left(f\left(g^{1}(x), \ldots, g^{L}(x)\right)\right)(x)=\right. \\
\left.\sum_{l=1}^{L} \frac{\partial f}{\partial y_{l}}\left(y_{1}, \ldots, y_{L}\right)\right|_{\substack{y_{m}=g^{m}(x) \\
\forall m \in\{1, \ldots, L\}}}\left(\mathcal{A} g^{\prime}\right)(x) .
\end{gathered}
$$

■ What happens if $f \notin \operatorname{ker} \mathcal{A}$, i.e. $f$ does not have a finite radius of convergence.

- $\mathcal{A}$ fulfills a general 'chain rule':


## Theorem 4 MB [2016a]

If $f, g \in \mathbb{R}[[x]]_{\beta}^{\alpha}$ with $g_{0}=0$ and $g_{1}=1$ :

$$
\begin{gathered}
f \circ g \in \mathbb{R}[[x]]_{\beta}^{\alpha} \\
(\mathcal{A} f \circ g)(x)=f^{\prime}(g(x))(\mathcal{A} g)(x)+\left(\frac{x}{g(x)}\right)^{\beta} e^{\frac{g(x)-x}{\alpha x g(x)}}(\mathcal{A} f)(g(x))
\end{gathered}
$$

$\Rightarrow$ We can solve for asymptotics of implicitly defined power series.

- The factor $e^{\frac{g(x)-x}{\alpha \times g(x)}}$ generates typical prefactors of the form

$$
e^{\frac{g_{2}}{\alpha}}
$$

in asymptotic expansions.

## Example: Chord diagrams

- A chord diagram is the same as a single closed fermion loop with arbitrary photon interactions.
- A connected diagram is the same as such a diagram without fermion self energy insertions.
- Let $I(x)=\sum_{n=0}^{\infty}(2 n-1)!!x^{n}$ be the ordinary generating function of all chord diagrams and
- $C(x)$ the ordinary generating function of connected chord diagrams.
- They are related by $I(x)=1+C\left(x I(x)^{2}\right)$.

$$
\begin{aligned}
I(x) & =1+C\left(x I(x)^{2}\right) \\
(\mathcal{A} I)(x) & =\left(\mathcal{A} C\left(x I(x)^{2}\right)\right)(x) \\
(\mathcal{A} I)(x) & =2 x I(x) C^{\prime}\left(x I(x)^{2}\right)(\mathcal{A} I)(x)+\left(\frac{x}{x I(x)^{2}}\right)^{\frac{1}{2}} e^{\frac{x I(x)^{2}-x}{2 x^{2} I(x)^{2}}}(\mathcal{A C})\left(x I(x)^{2}\right)
\end{aligned}
$$

$I(x)$ is given by

$$
\begin{aligned}
I(x) & =\sum_{n=0}^{\infty}(2 n-1)!!x^{n} \\
& =\sum_{n=0}^{\infty} \frac{2^{n+\frac{1}{2}}}{\sqrt{2 \pi}} \Gamma\left(n+\frac{1}{2}\right) x^{n} \in \mathbb{R}[[x]]_{\frac{1}{2}}^{2}
\end{aligned}
$$

■ Using the chain rule for $\mathcal{A}$, we can solve for $(\mathcal{A C})(x)$ :

$$
(\mathcal{A C})(x)=\frac{1}{\sqrt{2 \pi}} \frac{x}{C(x)} e^{-\frac{1}{2 x}\left(2 C(x)+C(x)^{2}\right)}
$$

$$
(\mathcal{A C})(x)=\frac{1}{\sqrt{2 \pi}} \frac{x}{C(x)} e^{-\frac{1}{2 x}\left(2 C(x)+C(x)^{2}\right)}
$$

$\Rightarrow$ Generating function of the full asymptotic expansion of

$$
C_{n}=(2 n-1)!!e^{-1}\left(1-\frac{5}{2} \frac{1}{2 n-1}-\frac{43}{8} \frac{1}{(2 n-1)(2 n-3)}+\ldots C_{n}=\right.
$$

## Applications

## Action on Dyson-Schwinger-Equations

Let $p, g, f \in \mathbb{R}[[x]]_{\beta}^{\alpha}$ and $p \in \operatorname{ker} \mathcal{A}$, then the functional equation,

$$
p(g(x))=x+f(g(x))
$$

implies $\quad(\mathcal{A g})(x)=g^{\prime}(x)\left(\frac{x}{g(x)}\right)^{\beta} e^{\frac{g(x)-x}{\alpha \times g(x)}}(\mathcal{A} f)(g(x))$
and $\quad(\mathcal{A} f)(x)=g^{-1^{\prime}}(x)\left(\frac{x}{g^{-1}(x)}\right)^{\beta} e^{\frac{g^{-1}(x)-x}{\alpha x g^{-1}(x)}}(\mathcal{A g})\left(g^{-1}(x)\right)$.
where $g\left(g^{-1}(x)\right)=x$.
$\Rightarrow$ Solving the DSE 'perturbativly' to $n$ terms gives an asymptotic expansion up to order $n-2$ !

- $\mathcal{A}$ maps low order expansions to high order expansions.
- Asymptotic expansion independent of $p$.


## Example: Simple permutations

- Let $\pi \in S_{n}^{\text {simple }} \subset S_{n}$ such that $\pi([i, j]) \neq[k, l]$ for all $i, j, k, I \in[0, n]$ with $2 \leq|[i, j]| \leq n-1$, then $\pi$ is a simple permutation, which does not map an interval to another interval.
- With $S(x)=\sum_{n=0}^{\infty}\left|S_{n}^{\text {simple }}\right| x^{n}$ and $F(x)=\sum_{n=1}^{\infty} n!x^{n}$ :


## Albert et al. [2003]

$$
\frac{F(x)-F(x)^{2}}{1+F(x)}=x+S(F(x))
$$

- $F(x) \in \mathbb{R}[[x]]_{1}^{1}$ and $(\mathcal{A F})=1 \Rightarrow$ even though $S(x)$ is only given implicitly, we have an asymptotic expansion.

■ Generating function for asymptotic coefficients of $S(x)$ :

$$
\begin{aligned}
(\mathcal{A S})(x) & =\frac{1}{1+x} \frac{1-x-(1+x) \frac{S(x)}{x}}{1+(1+x) \frac{S(x)}{x^{2}}} e^{-\frac{2+(1+x) \frac{S(x)}{x^{2}}}{1-x-(1+x) \frac{S(x)}{x}}} \\
s_{n} & =e^{-2} n!\left(1-4 \frac{1}{n}+2 \frac{1}{n(n-1)}-\frac{40}{3} \frac{1}{n(n-1)(n-2)}+\ldots\right.
\end{aligned}
$$

- Generating function for asymptotic coefficients $\Rightarrow$ can analyze asymptotics of asymptotics.


## The ring of factorially divergent power series

■ $\mathbb{R}[[x]]_{\beta}^{\alpha}$ forms a subring of $\mathbb{R}[[x]]$ closed under multiplication, composition, differentiation and integration.

- $\mathcal{A}$ is a derivation on $\mathbb{R}[[x]]_{\beta}^{\alpha}$ which can be used to obtain asymptotic expansions of implicitly defined power series.
- Nice closure properties under asymptotic derivative $\mathcal{A}$.

■ Generalizations possible to multiple $\alpha_{1}, \ldots, \alpha_{I} \in \mathbb{C}$ with $\left|\alpha_{i}\right|=\alpha$.

- Question: Which classes of power series are closed under the operation of the asymptotic derivative?


## Some power series closed under the 'asymptotic' derivative

- A huge set of examples for factorially divergent power series is given by the following formal integral:

$$
Z(\hbar)=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+F(x)\right)}
$$

- This is to be interpreted as the power series given by,

$$
\begin{aligned}
Z(\hbar) & =\sum_{n=0}^{\infty} \int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{-\frac{x^{2}}{2 \hbar}} x^{n}\left[y^{n}\right] e^{\frac{F(y)}{\hbar}} \\
& =\sum_{n=0}^{\infty}(2 n-1)!!\hbar^{n}\left[y^{2 n}\right] e^{\frac{F(y)}{\hbar}}
\end{aligned}
$$

which gives a valid power series expansion in $\mathbb{R}[[\hbar]]$ for $F(x) \in x^{3} \mathbb{R}[[x]]$.

$$
Z(\hbar)=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+F(x)\right)}
$$

- Expansion of a zero-dimensional QFT. Cvitanović et al. [1978], Argyres et al. [2001], Hurst [1952], Molinari and Manini [2006]
■ Also the combinatorial generating function of the Feynman graphs contributing to the QFT with the interaction given by $F(x)$.
■ Maps from power series with non-vanishing radius of convergence to factorial growth power series.
$\Rightarrow$ Perfect ground to study the divergence of the perturbation expansion in general QFTs!

$$
Z(\hbar)=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+\sum_{k \geq 3} \lambda_{k} \frac{k^{k}}{k!}\right)}
$$

- Combinatorial interpretation:

$$
\begin{aligned}
Z(\hbar) & =1+\frac{1}{8} 00+\frac{1}{12} \bigcirc+\frac{1}{8} \bigcirc+\ldots \\
& =1+\hbar\left(\frac{1}{8} \lambda_{3}^{2}+\frac{1}{12} \lambda_{3}^{2}+\frac{1}{8} \lambda_{4}\right)+\ldots
\end{aligned}
$$

■ $Z$ counts graphs with weights $\lambda$ assigned to each vertex. $\hbar$ counts the Euler characteristic of the graph (i.e. \#loops - \#components)

## Example

$$
Z^{\text {stir }}(\hbar):=\frac{\Gamma\left(\frac{1}{\hbar}\right)}{\sqrt{2 \pi \hbar}\left(\frac{1}{\hbar}\right)^{\frac{1}{\hbar}} e^{-\frac{1}{\hbar}}}=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}-\left(e^{x}-1-x-\frac{x^{2}}{2}\right)\right)}
$$

■ Combinatorial integral representation of Stirling's famous (asymptotic) expansion of the Gamma-function.
■ Counts the (orbifold) Euler characteristic of the moduli space of (stable) open curves Kontsevich [1992],

$$
\log Z^{\text {stir }}(\hbar)=\sum_{\substack{g, n \\ n+2 g-2 \geq 0}} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} \hbar^{n+2 g-2}
$$

## Example

$$
Z^{s t i r}(\hbar):=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}-\left(e^{x}-1-x-\frac{x^{2}}{2}\right)\right)}
$$

- Set $F(x)=-\left(e^{x}-1-x-\frac{x^{2}}{2}\right)$. Combinatorial: All vertices are allowed and $\lambda_{k}=-1$.
- Diagrammatically:

$$
\begin{aligned}
Z^{\text {stir }}(\hbar) & =1+\frac{1}{8} \bigcirc 0+\frac{1}{12} \bigcirc+\frac{1}{8} \bigcirc \bigcirc+\ldots \\
& =1+\hbar \underbrace{\left(\frac{1}{8}(-1)^{2}+\frac{1}{12}(-1)^{2}+\frac{1}{8}(-1)\right)}_{=\frac{1}{12}}+\ldots \\
& =1+\hbar \frac{1}{12}+\hbar^{2} \frac{1}{288}-\hbar^{3} \frac{139}{51840}-\hbar^{4} \frac{571}{2488320}+\ldots
\end{aligned}
$$

## Computation

$$
\mathcal{F}[F](\hbar):=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+F(x)\right)}=\sum_{n=0}^{\infty}(2 n-1)!!\hbar^{n}\left[y^{2 n}\right] e^{\frac{F(y)}{\hbar}}
$$

■ Defines a map $\mathcal{F}: x^{3} \mathbb{R}[[x]] \rightarrow \mathbb{R}[[\hbar]]$.

- Efficient calculation is possible using,


## Bivariate power series diagonalization

$$
\begin{aligned}
& \int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+F(x)\right)}= \\
& \int_{\mathbb{R}} \frac{d y}{\sqrt{2 \pi \hbar}} e^{-\frac{y^{2}}{2 \hbar}} G^{\prime}(y)
\end{aligned}
$$

where $G(y)$ is the power series solution of $\frac{y^{2}}{2}=\frac{G(y)^{2}}{2}-F(G(y))$.

$$
\mathcal{F}[F](\hbar)=\sum_{n=0}^{\infty}(2 n-1)!!\left[y^{2 n}\right] G^{\prime}(y)
$$

where $G(y)$ is the (positive) solution of $\frac{y^{2}}{2}=\frac{G(y)^{2}}{2}-F(G(y))$.

- The implicit equation $\frac{y^{2}}{2}=\frac{G(y)^{2}}{2}-F(G(y))$ defines a complex curve in $\mathbb{C}^{2}$.

■ The asymptotics of $\mathcal{F}[F](\hbar)$ is governed by the asymptotics of the convergent power series $G(y)$.

- Asymptotics of $G(y)$ can be calculated using methods of analytic combinatorics (Flajolet-Salvy algorithm). Banderier and Drmota [2015]

$$
\mathcal{F}[F](\hbar):=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+F(x)\right)}
$$

■ For minor restrictions on $F$, the mapping $\mathcal{F}: x^{3} \mathbb{R}[[x]] \rightarrow \mathbb{R}[[\hbar]]$ behaves nicely under the asymptotic derivative:

## Asymptotics of combinatorial integrals MB [2016b]

$$
\mathcal{A} \mathcal{F}[F](\hbar)=\frac{1}{2 \pi \sqrt{\left(F^{\prime \prime}(\tau)-1\right)}} \mathcal{F}[\widetilde{F}]\left(-\frac{\hbar}{F^{\prime \prime}(\tau)-1}\right)
$$

where $\alpha=\frac{1}{\frac{\tau^{2}}{2}-F(\tau)}, \beta=0$,
$\widetilde{F}(x)=-\frac{F(x+\tau)-F(\tau)-x F^{\prime}(\tau)-\frac{x^{2}}{2} F^{\prime \prime}(\tau)}{F^{\prime \prime}(\tau)-1} \in x^{3} \mathbb{R}[[x]]$ and $\tau$ is the dominant (branch cut) singularity associated to the curve $\frac{y^{2}}{2}=\frac{x^{2}}{2}-F(x)$.

- $\mathcal{A F} \mathcal{F}[F](\hbar)$ is given by the expansion of the 'combinatorial integral' shifted to the 'nearest' saddle-point of the exponent,

$$
Z(\hbar)=\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar} H(x)}
$$

with $H(x)=-\frac{x^{2}}{2}+F(x)$.

- As a mnemonic (not well-defined!)

$$
\mathcal{A} Z(\hbar)=\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}(H(x+\tau)-H(\tau))} .
$$

with $\tau$ the position of the 'nearest' saddle-point.

- That means with $Z(\hbar)=\sum_{n=0} z_{n} \hbar^{n}$ and $\alpha=\frac{1}{H(\tau)}$

$$
z_{n}=\sum_{k=0}^{R-1} \alpha^{n-k} \Gamma(n-k)\left[\hbar^{k}\right] \mathcal{A} Z(\hbar)+\mathcal{O}\left(\alpha^{n} \Gamma(n-R)\right)
$$

## Example

$$
\tilde{Z}^{Q E D}(\hbar)=\int_{\mathbb{R}} \frac{d A}{\sqrt{2 \pi \hbar}} e^{-\frac{1}{\hbar} \frac{\sin ^{2}(A)}{2}}
$$

- Using the formalism we see that $\tilde{Z}^{Q E D} \in \mathbb{R}[[\hbar]]_{0}^{2}$ and $\mathcal{A} \widetilde{Z}^{\mathrm{QED}}(\hbar)=\frac{2}{2 \pi} \widetilde{Z}^{\text {QED }}(-\hbar)$

Asymptotics of QED diagram counting MB [2016b]
Therefore with $\widetilde{Z}^{\text {QED }}(\hbar)=\sum_{n=0} z_{n}^{\text {QED }} \hbar^{n}$

$$
z_{n}^{\text {QED }}=\frac{1}{\pi} \sum_{k=0}^{R-1} 2^{n-k} \Gamma(n-k)\left[\hbar^{k}\right] \tilde{Z}^{Q E D}(-\hbar)+\mathcal{O}\left(2^{n} \Gamma(n-R)\right)
$$

- Full asymptotic expansion of $\tilde{Z}^{Q E D}(\hbar)$.
- The computation of the asymptotic expansion is as 'easy' as the computation of the original expansion.
- From $\mathcal{A} \widetilde{Z}^{Q E D}(\hbar)$ asymptotic expansions of all derived quantities can be obtained using the algebraic properties of the ring of factorially divergent power series.
- Example:

$$
\mathcal{A} \log \widetilde{Z}^{\mathrm{QED}}(\hbar)=\frac{\mathcal{A} \widetilde{Z}^{\mathrm{QED}}(\hbar)}{\widetilde{Z}^{\mathrm{QED}}(\hbar)}=\frac{1}{\pi} \frac{\widetilde{Z}^{\mathrm{QED}}(-\hbar)}{\widetilde{Z}^{\mathrm{QED}}(\hbar)}
$$

This is the generating function of the asymptotic expansion of connected QED diagrams.

- Implicit functional relations can be solved using the generalized chain rule.
- This gives rise to the asymptotic expansions of 'renormalized' quantities. Combinatorially, these correspond to the number of skeleton or primitive diagrams.

■ Combinatorial integrals

$$
\int_{\mathbb{R}} \frac{d x}{\sqrt{2 \pi \hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2}+F(x)\right)}
$$

with minor restrictions on $F(x)$ provide a large set of generating functions which are algebraically closed under composition, inversion, and the asymptotic derivative.

- Asymptotic expansions of arbitrary order can be obtained from a combinatorial integral as well as any implicitly given function of them.


## Conclusions

- A direct application of the ring of factorially divergent power series is bringing the classical treatments of zero-dimensional QFT to the asymptotic level.
- Applications to graph-enumeration.
- 'Canonical' nature of combinatorial integrals, because of the resemblance to path integral formulations.


## Further applications in QFT

- The divergence of the perturbation expansions in physical QFTs is believed to be governed by the growth of diagrams.
- In fact there are strong indications for this.
- Possible to give bounds on Feynman integrals at each loop order.
$\Rightarrow$ Formulate combinatorial models which encode these bounds in terms of combinatorial integrals and study their asymptotics.

MH Albert, M Klazar, and MD Atkinson. The enumeration of simple permutations. 2003.
EN Argyres, AFW van Hameren, RHP Kleiss, and CG Papadopoulos. Zero-dimensional field theory. The European Physical Journal C-Particles and Fields, 19(3):567-582, 2001.
Cyril Banderier and Michael Drmota. Formulae and asymptotics for coefficients of algebraic functions. Combinatorics, Probability and Computing, 24(01):1-53, 2015.
Edward A Bender. An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3):451-458, 1975.
Predrag Cvitanović, B Lautrup, and Robert B Pearson. Number and weights of feynman diagrams. Physical Review D, 18(6): 1939, 1978.

Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. cambridge University press, 2009.
CA Hurst. The enumeration of graphs in the feynman-dyson technique. In Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, volume 214, pages 44-61. The Royal Society, 1952.
Maxim Kontsevich. Intersection theory on the moduli space of curves and the matrix airy function. Communications in Mathematical Physics, 147(1):1-23, 1992.
MB. Generating asymptotics for factorially divergent sequences. arXiv preprint arXiv:1603.01236, 2016a.
MB. Asymptotic enumeration of Feynman diagrams. In preparation, 2016b.
Luca Guido Molinari and Nicola Manini. Enumeration of many-body skeleton diagrams. The European Physical Journal B-Condensed Matter and Complex Systems, 51(3):331-336, 2006.


[^0]:    ${ }^{1}$ borinsky@physik.hu-berlin.de

