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Motivation

For most systems, perturbation theory is necessary to
compute physical quantities.

Often the perturbation expansions turn out to have vanishing
radius of convergence!

Many of the expansions diverge factorially, i.e.
an ≈ CAnΓ(n + β) for large n.

These expansions often have a combinatorial interpretation.

⇒ Analyse factorially divergent power series from a combinatorial
perspective.

Treat factorially divergent power series analogous to the
powerful framework of analytic combinatorics. Flajolet and
Sedgewick [2009]
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Suppose a power series behaves asymptotically as AnΓ(n + β)
in contrast to, e.g. en

2
, Γ(
√
n + β), Γ(n + β)2, etc.

In the AnΓ(n + β) case, knowledge of the asymptotic
behaviour of one observable is enough to obtain knowledge of
the asymptotic behaviour of all derived quantities.

This can be made quantitative by studying the ring of
factorially divergent power series.
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Factorially divergent power series

Consider the class of formal power series R[[x ]]αβ ⊂ R[[x ]]
which admit an asymptotic expansion for large n of the form,

fn = αn+βΓ(n + β)

(
c0 +

c1

n + β
+

c2

(n + β)(n + β − 1)
+ . . .

)
including power series with

lim
n→∞

fn
αnΓ(n + β)

= 0

⇒ ck = 0 for all k ≥ 0.

Note, that the type of the asymptotic expansion is heavily
restricted!
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Consider a power series f (x) ∈ R[[x ]]αβ for large n:

fn = αn+βΓ(n + β)

(
c0 +

c1

n + β
+

c2

(n + β)(n + β − 1)
+ . . .

)
Idea: Interpret the coefficients ck of the asymptotic
expansion as a new power series.

Definition

A maps a power series to its asymptotic expansion:

A : R[[x ]]αβ → R[[x ]]

f (x) 7→ γ(x) =
∞∑
k=0

ckx
k
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Theorem 1

A is a derivation on R[[x ]]αβ :

(Af · g)(x) = f (x)(Ag)(x) + (Af )(x)g(x)

Follows from the log-convexity of Γ.

⇒ R[[x ]]αβ is a subring of R[[x ]].

Proof sketch

With h(x) = f (x)g(x),

hn =
R−1∑
k=0

fn−kgk +
R−1∑
k=0

fkgn−k︸ ︷︷ ︸
High order times low order

+
n−R∑
k=R

fkgn−k︸ ︷︷ ︸
O(αnΓ(n+β−R))

.
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What happens for composition of power series ∈ R[[x ]]αβ?

Theorem 2 Bender [1975]

If |fn| ≤ Cn then, for g ∈ R[[x ]]αβ with g0 = 0:

f ◦ g ∈ R[[x ]]αβ

(Af ◦ g)(x) = f ′(g(x))(Ag)(x)

Bender considered much more general power series, but this is
a direct corollary of his theorem in 1975.
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Theorem 3 MB [2016a]

More general for f ∈ R{y1, . . . , yL} and g1, . . . , gL ∈ R[[x ]]αβ :

(A(f (g1(x), . . . , gL(x)))(x) =

L∑
l=1

∂f

∂yl
(y1, . . . , yL)

∣∣∣ ym=gm(x)
∀m∈{1,...,L}

(Ag l)(x).

M. Borinsky (HU Berlin) Asymptotic Calculus for Combinatorial Dyson-Schwinger Equations 8



What happens if f /∈ kerA, i.e. f does not have a finite radius
of convergence.

A fulfills a general ‘chain rule’:

Theorem 4 MB [2016a]

If f , g ∈ R[[x ]]αβ with g0 = 0 and g1 = 1:

f ◦ g ∈ R[[x ]]αβ

(Af ◦ g)(x) = f ′(g(x))(Ag)(x) +

(
x

g(x)

)β
e

g(x)−x
αxg(x) (Af )(g(x))

⇒ We can solve for asymptotics of implicitly defined power series.

The factor e
g(x)−x
αxg(x) generates typical prefactors of the form

e
g2
α

in asymptotic expansions.
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Example: Chord diagrams

A chord diagram is the same as a single closed fermion loop
with arbitrary photon interactions.

A connected diagram is the same as such a diagram without
fermion self energy insertions.

Let I (x) =
∑∞

n=0(2n − 1)!!xn be the ordinary generating
function of all chord diagrams and

C (x) the ordinary generating function of connected chord
diagrams.

They are related by I (x) = 1 + C (xI (x)2).
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I (x) = 1 + C (xI (x)2)

(AI )(x) = (AC (xI (x)2))(x)

(AI )(x) = 2xI (x)C ′(xI (x)2)(AI )(x) +

(
x

xI (x)2

) 1
2

e
xI (x)2−x

2x2I (x)2 (AC )(xI (x)2)

I (x) is given by

I (x) =
∞∑
n=0

(2n − 1)!!xn

=
∞∑
n=0

2n+ 1
2

√
2π

Γ(n +
1

2
)xn ∈ R[[x ]]21

2

Using the chain rule for A, we can solve for (AC )(x):

(AC )(x) =
1√
2π

x

C (x)
e−

1
2x

(2C(x)+C(x)2)
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(AC )(x) =
1√
2π

x

C (x)
e−

1
2x

(2C(x)+C(x)2)

⇒ Generating function of the full asymptotic expansion of

Cn = (2n − 1)!!e−1

(
1− 5

2

1

2n − 1
− 43

8

1

(2n − 1)(2n − 3)
+ . . . Cn = (2n − 1)!! e−1

(
1− 5

2

1

2n − 1
− 43

8

1

(2n − 1)(2n − 3)
+ . . .︸ ︷︷ ︸

Coefficients enumerated by (AC)(x)
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Applications

Action on Dyson-Schwinger-Equations

Let p, g , f ∈ R[[x ]]αβ and p ∈ kerA, then the functional equation,

p(g(x)) = x + f (g(x))

implies (Ag)(x) = g ′(x)

(
x

g(x)

)β
e

g(x)−x
αxg(x) (Af )(g(x))

and (Af )(x) = g−1′(x)

(
x

g−1(x)

)β
e

g−1(x)−x

αxg−1(x) (Ag)(g−1(x)).

where g(g−1(x)) = x .

⇒ Solving the DSE ‘perturbativly’ to n terms gives an
asymptotic expansion up to order n − 2!

A maps low order expansions to high order expansions.

Asymptotic expansion independent of p.
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Example: Simple permutations

Let π ∈ S simple
n ⊂ Sn such that π([i , j ]) 6= [k , l ] for all

i , j , k , l ∈ [0, n] with 2 ≤ |[i , j ]| ≤ n − 1, then π is a simple
permutation, which does not map an interval to another
interval.

With S(x) =
∑∞

n=0 |S
simple
n |xn and F (x) =

∑∞
n=1 n!xn:

Albert et al. [2003]

F (x)− F (x)2

1 + F (x)
= x + S(F (x))

F (x) ∈ R[[x ]]11 and (AF ) = 1 ⇒ even though S(x) is only
given implicitly, we have an asymptotic expansion.
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Generating function for asymptotic coefficients of S(x):

(AS)(x) =
1

1 + x

1− x − (1 + x)S(x)
x

1 + (1 + x)S(x)
x2

e
−

2+(1+x)
S(x)

x2

1−x−(1+x)
S(x)
x

sn = e−2n!

(
1− 4

1

n
+ 2

1

n(n − 1)
− 40

3

1

n(n − 1)(n − 2)
+ . . .

)
Generating function for asymptotic coefficients ⇒ can analyze
asymptotics of asymptotics.
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The ring of factorially divergent power series

R[[x ]]αβ forms a subring of R[[x ]] closed under
multiplication, composition, differentiation and
integration.

A is a derivation on R[[x ]]αβ which can be used to obtain
asymptotic expansions of implicitly defined power series.

Nice closure properties under asymptotic derivative A.

Generalizations possible to multiple α1, . . . , αl ∈ C with
|αi | = α.

Question: Which classes of power series are closed under the
operation of the asymptotic derivative?
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Some power series closed under the ‘asymptotic’ derivative

A huge set of examples for factorially divergent power series is
given by the following formal integral:

Z (~) =

∫
R

dx√
2π~

e
1
~

(
− x2

2
+F (x)

)

This is to be interpreted as the power series given by,

Z (~) =
∞∑
n=0

∫
R

dx√
2π~

e−
x2

2~ xn[yn]e
F (y)
~

=
∞∑
n=0

(2n − 1)!!~n[y2n]e
F (y)
~

which gives a valid power series expansion in R[[~]] for
F (x) ∈ x3R[[x ]].

M. Borinsky (HU Berlin) Asymptotic Calculus for Combinatorial Dyson-Schwinger Equations 17



Z (~) =

∫
R

dx√
2π~

e
1
~

(
− x2

2
+F (x)

)

Expansion of a zero-dimensional QFT. Cvitanović et al.
[1978], Argyres et al. [2001], Hurst [1952], Molinari and
Manini [2006]

Also the combinatorial generating function of the Feynman
graphs contributing to the QFT with the interaction given by
F (x).

Maps from power series with non-vanishing radius of
convergence to factorial growth power series.

⇒ Perfect ground to study the divergence of the perturbation
expansion in general QFTs!
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Z (~) =

∫
R

dx√
2π~

e
1
~

(
− x2

2
+
∑

k≥3 λk
xk

k!

)

Combinatorial interpretation:

Z (~) = 1 +
1

8
+

1

12
+

1

8
+ . . .

= 1 +~(
1

8
λ2

3 +
1

12
λ2

3 +
1

8
λ4) + . . .

Z counts graphs with weights λ assigned to each vertex. ~
counts the Euler characteristic of the graph (i.e.
#loops−#components)
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Example

Z stir(~) :=
Γ
(

1
~
)

√
2π~

(
1
~
) 1

~ e−
1
~

=

∫
R

dx√
2π~

e
1
~

(
− x2

2
−(ex−1−x− x2

2
)
)

Combinatorial integral representation of Stirling’s famous
(asymptotic) expansion of the Gamma-function.

Counts the (orbifold) Euler characteristic of the moduli space
of (stable) open curves Kontsevich [1992],

logZ stir(~) =
∑
g ,n

n+2g−2≥0

χ(Mg ,n)

n!
~n+2g−2
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Example

Z stir(~) :=

∫
R

dx√
2π~

e
1
~

(
− x2

2
−(ex−1−x− x2

2
)
)

Set F (x) = −(ex − 1− x − x2

2 ). Combinatorial: All vertices
are allowed and λk = −1.

Diagrammatically:

Z stir(~) = 1 +
1

8
+

1

12
+

1

8
+ . . .

= 1 + ~ (
1

8
(−1)2 +

1

12
(−1)2 +

1

8
(−1))︸ ︷︷ ︸

= 1
12

+ . . .

= 1 + ~
1

12
+ ~2 1

288
− ~3 139

51840
− ~4 571

2488320
+ . . .
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Computation

F [F ](~) :=

∫
R

dx√
2π~

e
1
~

(
− x2

2
+F (x)

)
=
∞∑
n=0

(2n − 1)!!~n[y2n]e
F (y)
~

Defines a map F : x3R[[x ]]→ R[[~]].

Efficient calculation is possible using,

Bivariate power series diagonalization

∫
R

dx√
2π~

e
1
~

(
− x2

2
+F (x)

)
=∫

R

dy√
2π~

e−
y2

2~G ′(y),

where G (y) is the power series solution of y2

2 = G(y)2

2 − F (G (y)).
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F [F ](~) =
∞∑
n=0

(2n − 1)!![y2n]G ′(y)

where G (y) is the (positive) solution of y2

2 = G(y)2

2 − F (G (y)).

The implicit equation y2

2 = G(y)2

2 − F (G (y)) defines a
complex curve in C2.

The asymptotics of F [F ](~) is governed by the asymptotics of
the convergent power series G (y).

Asymptotics of G (y) can be calculated using methods of
analytic combinatorics (Flajolet-Salvy algorithm). Banderier
and Drmota [2015]
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F [F ](~) :=

∫
R

dx√
2π~

e
1
~

(
− x2

2
+F (x)

)

For minor restrictions on F , the mapping
F : x3R[[x ]]→ R[[~]] behaves nicely under the asymptotic
derivative:

Asymptotics of combinatorial integrals MB [2016b]

AF [F ](~) =
1

2π
√

(F ′′(τ)− 1)
F [F̃ ]

(
− ~
F ′′(τ)− 1

)
where α = 1

τ2

2
−F (τ)

, β = 0,

F̃ (x) = −F (x+τ)−F (τ)−xF ′(τ)− x2

2
F ′′(τ)

F ′′(τ)−1 ∈ x3R[[x ]] and τ is the

dominant (branch cut) singularity associated to the curve
y2

2 = x2

2 − F (x) .
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AF [F ](~) is given by the expansion of the ‘combinatorial
integral’ shifted to the ‘nearest’ saddle-point of the exponent,

Z (~) =

∫
R

dx√
2π~

e
1
~H(x)

with H(x) = − x2

2 + F (x).

As a mnemonic (not well-defined!)

AZ (~) =
1

2π

∫
R

dx√
2π~

e
1
~ (H(x+τ)−H(τ)).

with τ the position of the ‘nearest’ saddle-point.

That means with Z (~) =
∑

n=0 zn~n and α = 1
H(τ)

zn =
R−1∑
k=0

αn−kΓ(n − k)[~k ]AZ (~) +O(αnΓ(n − R))
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Example

Z̃QED(~) =

∫
R

dA√
2π~

e−
1
~

sin2(A)
2

Using the formalism we see that Z̃QED ∈ R[[~]]20 and

AZ̃QED(~) = 2
2π Z̃

QED(−~)

Asymptotics of QED diagram counting MB [2016b]

Therefore with Z̃QED(~) =
∑

n=0 z
QED
n ~n

zQED
n =

1

π

R−1∑
k=0

2n−kΓ(n − k)[~k ]Z̃QED(−~) +O(2nΓ(n − R))

Full asymptotic expansion of Z̃QED(~).
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The computation of the asymptotic expansion is as ‘easy’ as
the computation of the original expansion.

From AZ̃QED(~) asymptotic expansions of all derived
quantities can be obtained using the algebraic properties of
the ring of factorially divergent power series.

Example:

A log Z̃QED(~) =
AZ̃QED(~)

Z̃QED(~)
=

1

π

Z̃QED(−~)

Z̃QED(~)

This is the generating function of the asymptotic expansion of
connected QED diagrams.

Implicit functional relations can be solved using the
generalized chain rule.

This gives rise to the asymptotic expansions of ‘renormalized’
quantities. Combinatorially, these correspond to the number
of skeleton or primitive diagrams.
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Combinatorial integrals∫
R

dx√
2π~

e
1
~

(
− x2

2
+F (x)

)

with minor restrictions on F (x) provide a large set of
generating functions which are algebraically closed under
composition, inversion, and the asymptotic derivative.

Asymptotic expansions of arbitrary order can be obtained from
a combinatorial integral as well as any implicitly given
function of them.
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Conclusions

A direct application of the ring of factorially divergent power
series is bringing the classical treatments of zero-dimensional
QFT to the asymptotic level.

Applications to graph-enumeration.

‘Canonical’ nature of combinatorial integrals, because of the
resemblance to path integral formulations.
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Further applications in QFT

The divergence of the perturbation expansions in physical
QFTs is believed to be governed by the growth of diagrams.

In fact there are strong indications for this.

Possible to give bounds on Feynman integrals at each loop
order.

⇒ Formulate combinatorial models which encode these bounds in
terms of combinatorial integrals and study their asymptotics.
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