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Quantum Field theory

• Objects of interest: Correlation functions

G (x1, x2, x3)

• Quantifies correlation between points in space.

• G (x1, x2, x3) ∈ R ⇒ probability of three ‘scalar’ events.

• G (x1, x2, x3) ∈ V ⇒ substructure at each point (e.g. spin).

• Arbitary number of points can be correlated G (x1, x2, x3, . . .).
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Perturbation theory

• No exact formula for correlation functions!

• We need perturbation theory:

G (x1, x2, x3) = G0(x1, x2, x3) + !G1(x1, x2, x3) + !
2G2(x1, x2, x3) + . .

• Each Gn(x1, x2, x3) can be written as a sum over graphs:

Gn(x1, x2, x3) =
∑

Γ
χ(Γ)=1−n

ϕ(Γ)

The function ϕ associates an integral to each graph.

• The graphs are called Feynman graphs. The integrals are

called Feynman integrals, the function ϕ is called Feynman

rule.
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Algebraic integrals: Periods
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Algebraic integrals: Periods

• The Feynman integrals are except for the dependence on the

physical input algebraic integrals:

ϕ(Γ) =

∫
dΩ

UD/2

(
U
F

)ω

• The renormalization group independent part is purely

algebraic: The ‘period’
∫

dΩ

UD/2

is an interesting number.

• For small graphs this number is mostly a linear combination of

multiple zeta values.

• There exists various number theoretic conjectures on the

period: Coaction conjecture, Cosmic galois group, Motives

etc. 3



Two viewpoints

Momentum space Position space
Fourier

Correlation functions are

parametrized by the momentum

of particles

Correlation functions are

parametrized by the position of

particles
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Why position space?



Why position space?

Advantages

• Simpler Feynman rules

• No IBP reduction necessary

• Conceptually interesting viewpoint

Caveats

• New technology needed

• Only position space quantities accessible

Proof of concept:
7-loop β-function in φ4 calculated in 2016 by Oliver Schnetz using

graphical functions.
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Feynman integral in momentum space

G̃ (p1, . . . , pn) =

(
∏

e∈E

∫
dDke∆̃(ke)

)


∏

v∈Vint

δ(D)

(
∑

e#v

ke

)



Lower dimensional integral

Feynman integral in position space

G (x1, . . . , xn) =




∏

v∈Vint

∫
dDxv








∏

{a,b}∈E

∆(xa − xb)





Better factorization properties
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Examples

Momentum space Position space

∆̃(p12)∆̃(p23)∆̃(p31) ∆(x12)∆(x23)∆(x31)

Di(z,z̄)√
−λ(p212,p

2
23,p

2
31)

Di(z,z̄)√
−λ(x212,x

2
23,x

2
31)
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Graphical reductions



Graphical reduction rules

1. rule: propogators between external vertices

G (xa, xb, xc) =

∫
dDy∆(xa − y)∆(xb − y)∆(xc − y)∆(xa − xb)

= ∆(xa − xb)H(xa, xb, xc)

⇒ edges between external vertices factorize.
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Graphical reduction rules

2. rule: split graph

⇒ factorizes if split along external vertices. 10
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Graphical reduction rules

Intermezzo: amputating a propagator

Recall the definition of the propagator, ∆, as Green’s function for

the free field equation

(!x −m2)∆(x − y) = δ(D)(x − y)

We can use this equation to amputate free external edges.
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Graphical reduction rules

3. rule: amputating an external edge

(!xa −m2)G (xa, xb, xc) =

∫
dDy(!xa −m2)∆(xa − y)∆(xb − y)∆(xc −

=

∫
dDyδ(xa − y)∆(xb − y)∆(xc − y)

= ∆(xb − xa)∆(xc − xa) = H(xa, xb, xc)

⇒ solve differential equation to add external edge. 12
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Differential equations

For rule 3, a differential equation needs to be solved:

(!xa −m2)G (xa, . . .) = G (xa, . . .)

Can be solved systematically if (Schnetz 2013)

• particles are massless, m = 0,

• only 3-point functions are considered

• in D = 4− ε Euklidean space.

13
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Differential equations

For rule 3, a differential equation needs to be solved:

(!xa −m2)G (xa, . . .) = G (xa, . . .)

Can be solved systematically if (Schnetz 2013)

• particles are massless, m = 0,

• only 3-point functions are considered

• in D = 4− ε Euklidean space.

Related approach: (Drummond, Henn, Smirnov 2007) (Magic

identities)
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3-point configuration space is 2-dimensional, due to Poincare and

scaling invariance:

G (xa, xb, xc) = G (x ′a, x
′
b, x

′
c)

for

x ′k
µ = Λµ

νx
ν
k

x ′k
µ = vµ + xµk

with Λ ∈ SO(D) and v ∈ RD and

G (λxa,λxb,λxc) = λωG (xa, xb, xc).
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3-point configuration space is 2-dimensional, due to Poincare and

scaling invariance:

G (xa, xb, xc) = G (x ′a, x
′
b, x

′
c)

for

x ′k
µ = Λµ

νx
ν
k

x ′k
µ = vµ + xµk

with Λ ∈ SO(D) and v ∈ RD and

G (λxa,λxb,λxc) = λωG (xa, xb, xc).

⇒ G only depends on the shape of the triangle spanned by

xa, xb, xc .
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Exploit this symmetry by using complex paramater z such that

z z̄ =
x2ac
x2ab

and (1− z)(1− z̄) =
x2bc
x2ab
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Exploit this symmetry by using complex paramater z such that

z z̄ =
x2ac
x2ab

and (1− z)(1− z̄) =
x2bc
x2ab

!xc G (xa, xb, xc) = G (xa, xb, xc)

1

z− z̄
∂z∂z̄(z− z̄) G (z, z̄) = G (z, z̄)

The ∂z and ∂z̄ operators can be inverted in the function space of

generalized single-valued hyperlogarithms (Chavez, Duhr 2012,

Schnetz 2014, Schnetz 2017).
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Graphical functions

• Rules 1,2,3 are part of a larger framework: graphical functions

(Schnetz 2013).

• Graphical functions can also be applied in a broader context,

e.g. to conformal amplitudes (Basso, Dixon 2017).

• Calculation within this framework are extremely efficient, due

to the rapid reductions and small numbers of irreducible

master diagrams.

• Additional identities specific to the theory (e.g. conformal

transformations for scalar theories).
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Graphical functions for gauge theory



Beyond scalar

Only change: adding an edge

For instance, for abelian gauge theory:

!x → /∂ and ηµν!x

17



Beyond scalar

Only change: adding an edge

For instance, for abelian gauge theory:

!x → /∂ and ηµν!x

The differential equation for appending an edge,

!xaG (xa, . . .) = G (xa, . . .)

becomes a system of differential equations

/∂xaG (xa, . . .) = G (xa, . . .)

17
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Paramatrizing non-scalar graphical functions

/∂xc G (xa, xb, xc) = G (xa, xb, xc)
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Paramatrizing non-scalar graphical functions

/∂xc G (xa, xb, xc) = G (xa, xb, xc)

(
/λ ∂z + /̄λ ∂z̄ −

Pµν

z− z̄

(
∂ν
λ − ∂ν

λ̄

))
G (z, z̄,λ, λ̄) = G (z, z̄,λ, λ̄)

Using light-cone-like parametrization z, z̄,λµ, λ̄
µ
such that

z z̄ =
x2ac
x2ab

and (1− z)(1− z̄) =
x2bc
x2ab

xµab = λµ+ λ̄
µ

xµac = zλµ+ z̄ λ̄
µ

xµbc = (1− z)λµ+(1− z̄) λ̄
µ

λµ λµ = λ̄
µ
λ̄µ = 0

Actual inversion becomes more complicated: D &= 4 dimensional

Laplacian has to be inverted.
18
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Diagonalization of the equation system gives,




∆D 0 0

0 ∆D+2 0

0 0 ∆D+4



G̃ (xa, xb, xc) = G̃ (xa, xb, xc),

where ∆D = 2
z− z̄∂z∂z̄(z− z̄)− D−4

z− z̄ (∂z − ∂z̄).
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Diagonalization of the equation system gives,




∆D 0 0

0 ∆D+2 0

0 0 ∆D+4



G̃ (xa, xb, xc) = G̃ (xa, xb, xc),

where ∆D = 2
z− z̄∂z∂z̄(z− z̄)− D−4

z− z̄ (∂z − ∂z̄).

⇒ we would like to invert ∆D for general even D.
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Extension to D &= 4

• For general dimension D we need to solve,

(
2

z− z̄
∂z∂z̄(z− z̄)−

D − 4

z− z̄
(∂z − ∂z̄)

)
G (z, z̄) = G (z, z̄).
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Extension to D &= 4

• For general dimension D we need to solve,

(
2

z− z̄
∂z∂z̄(z− z̄)−

D − 4

z− z̄
(∂z − ∂z̄)

)
G (z, z̄) = G (z, z̄).

• This is also possible for arbitrary even D using a non-trivial

linear combination of integration operators.

⇒ Opens the door to calculations in gauge theories.

⇒ Immediately possible tools: φ3-theory. With applications to

percolation theory and other variants (e.g. biadjoint φ3).
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An inverse to the differential operator

1

2
∆2+2n =

1

z− z̄
∂z∂z̄(z− z̄)−

n − 1

z− z̄
(∂z − ∂z̄)

is given by the integration operator:

In =
n∑

k,l=0

cn,k,l(z− z̄)−k

∫

SV
d z(z− z̄)k+l

∫

SV
d z̄(z− z̄)−l

where cn,k,l are some easily determined coefficients.
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Results

βφ3(g) =
( 5

2016
π6 −

46519

829440
π4 +

102052031

6718464
+

99

16
ζ(3)2+

+
366647

6912
ζ(3) +

151795

3456
ζ(5)−

5495

64
ζ(7)

)
g11+

+

(
1

192
π4 −

3404365

746496
−

4891

864
ζ(3) +

5

3
ζ(5)

)
g9+

+

(
33085

20736
+

5

8
ζ(3)

)
g7 −

125

144
g5 +

3

4
g3

4- and 3-loop results due to (Gracey 2015; de Alcantara

Bonfim, Kirkham, McKane, 1980).

⇒ More accurate predictions for the critical exponents in

percolation theory and for the Lee-Yang edge singularity.
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Summary

• Efficient graphical reduction replaces IBP reduction in x-space.
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Summary

• Efficient graphical reduction replaces IBP reduction in x-space.

• Work in progress: extension to gauge theory.

• Intermediate step finished: extension to arbitrary even D.

• Application of φ3-theory: Critical exponents in percolation

theory.

• Question: Extension to odd D possible?
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Example of a master diagram, which is irreducible w.r.t. rules 1–3:

24
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