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Slogan

Quantum Field theory is
the best theory

One of physics most precise tools
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The electron magnetic moment, —u/up = g/2 = 1.001 159652 18059 (13) [0.13 ppt], is determined
2.2 times more accurately than the value that stood for fourteen years. The most precisely determined
property of an elementary particle tests the most precise prediction of the standard model (SM) to 1 part in

10'2. The test would improve an order of magnitude if the uncertainty from discrepant measurements of the
fine structure constant a 1s eliminated since the SM prediction is a function of a. The new measurement and

SM theory together predict &' = 137.035999 166 (15) [0.11 ppb] with an uncertainty 10 times smaller
than the current disagreement between measured a values.

DOI: 10.1103/PhysRevLett.130.071801
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| Feynman integral:
Amplitudes Sum over graphs with  Symmetry Rational integrand,

L loops and n legs factor over positive orthand.
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Many shapes of Feynman integrals
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Here: Lee—Pomeransky P (a, p) is the base generating polynomial
polynomial/representation of a matroid associated with G.
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Rational integrand,

Amplitudes Sum over graphs with Symmetry over positive orthand

L loops and n legs factor
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Major problem: The number of graphs grows as (L!)
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Major problem: The number of graphs grows as (L!)

Predictions take factorial computer-time
(and become more expensive than measurement)



Quantum field theory is also the worst theory.

It Is very hard to actually make predictions.
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Key idea to overcome this: Avoid individual Feynman graphs (somehow)



New way of avoiding individual Feynman integrals:

Tropicalized QFT

arXiv:2508.14263

Relation to previous work on tropicalized Feynman integrals
Inspiration from and relations to Surfaceology

Particularly

Important empirical data:
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Integral over a moduli space of graphs.
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where ﬂgn — Ll ([Rf% / Aut(G))
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Is (almost) the moduli space of tropical curves and the moduli space of graphs.
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Ay = Y

G

— J Hp(P)

Volume form on the moduli space.
(Takes form of Feynman integrand on each graph stratum)
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A (D15 -esPy) = J Up(p)

Analogy to
Mirzakhani’s volume recursion on
moduli spaces of hyperbolic surfaces




Vg,n(LP oo Ln) — a)WP

My, (Ly,...L) N
/ Well—Petersson form

Moduli space of hyperbolic surfaces of genus g with
boundaries of length L, ..., L

.
Theorem

Vg,n(Ll’ ..., L) respects recursion equations (over all g, n).

= The volumes V, (L, ..., L,) can be computed easily.

= Allows the study properties of random surfaces distributed as wyp.



Can we find a similar recursion for amplitudes?

A (D15 -osPp) = J Up(p)

For L =0, yes —
For L > 0, no...

(Likely impossible by
and universality )



Tropicalize...

A (D15 -osPp) = J Up(p)



Tropicalized amplitudes
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MY,



Tropicalized amplitudes

ﬂgn(plv 9pn) = ﬂg(p)

= The amplitudes &} ,(py, ..., p,) can be computed easily.

= We can study properties of random graphs distributed as ,ug(p).



Tropicalization

Polynomial P(x,...,x,) = Z akaiki e R, [x,....x,]

keM =1
Definition P(x,, ..., x,) —maxH k,
‘Tropical approximation’ keM

Rule: z — max and q;, — 1.

‘Typical’ tropicalization is recovered in log coordinates.



Tropicalization

Polynomial P(x,...,x,) = Z akaiki e R, [x,....x,]

keM =1
| Definitiop | P(x,, ..., x,) —maxH k,
‘Tropical approximation’ keM
Lemma
P(x) )
There are C;, C, > 0, such that € < <G forall x=(x,....,x,) € R}

Ptr( X)



Tropicalized amplitudes

Y, preep) = | o

MY,
B d(ll...d(ln (r o dal"'dan
Up(P) |5, = PoapP? Up(P) p, = Pu (@, p)P"



up(p)

IS a volume form




More physical:
Lagrangian formulation




Massive scalar quantum field theory VD] = Z ﬂkcb"/k!
k>3

Action S [, J] = /RD dP =z (—(I)(g:) (O + m?) <I>(:1c) — V|®|(x) — J(m)q)(x)),

2



Massive scalar quantum field theory VD] = Z ﬂkcb"/k!

k>3

Action  S¢[®, J] = /RD.£ 47z (%‘I’(fv) (O 4 m?)* ®(z) — V[®](z) - J(:c)@(a:)),

Deformation: D — D - £and ([]1+ m?) — ([]+ m?)*

(Relative mass scalings of all operators remain constant.)



Massive scalar quantum field theory VD] = Z ﬂkcb"/k!

k>3

Action  S¢[®, J] = / . dP ¢z (%(I)(a:) (O + mz)f d(z) — V|P|(z) — J(m)@(x)),

Partition function Zg[a]] = /exp (—S€ [(I)a J]) D[(I)]



Massive scalar quantum field theory VD] = Z ﬂkcb"/k!

k>3

Action  S¢[®, J] = /RD.E 47z (%‘1’(9«") (O 4 m?)* ®(z) — V[®](z) - J(:z:)(I)(a:)),

Partition function ZS[J] = /GXP (—S€ [‘I)a J]) D[(I)]
Initial QFT Theorem
B ﬂ T Z(S _ tr
c=1 0"

Tropicalized QFT is a deformation limit of the initial QFT.



Effective action:
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Recursive solution <> exact solvability

Theorem

Perturbatively, the tropicalized QFT is completely fixed by the nonlinear PDE

—1
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Recursive solution <> exact solvability

Theorem

Perturbatively, the tropicalized QFT is completely fixed by the nonlinear PDE

— 1 , where

[ is the tropicalized QFT’s effective action, and

o (0= (- D) g g (o ()t

(+ trivial boundary conditions.)




Proof of the solvability/recursion

Exploits a recursive, combinatorial relation between tropicalized Feynman integrals

Figure 3: Illustration of the tropical loop equation. Each orange blob stands for a 1PI graph.
The right-hand graphs have one purple pointed edge. Cutting these edges yields beaded graphs.
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Tropicalized amplitudes

ﬂgn(plv 9pn) = ﬂg(p)

= The amplitudes &} ,(py, ..., p,) can be computed easily.

= We can study properties of random graphs distributed as ,ug(p).



Going back to the
non-tropicalized QFT



Probabllity density
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Key: this term is bounded.
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| | Sampling algorithms for
Numerical evaluation t
AI’
of Ay (P1s--sPp) ‘ * J p(p) =1.
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Monte Carlo



Theorem

There is a global sampling algorithm for the measure i 75(p) on A7 ..



Theorem

There is a global sampling algorithm for the measure i 75(p) on A7 ..

It’s runtime and memory requirements scale polynomially.



Theorem

There is a global sampling algorithm for the measure i 75(p) on A7 ..

It’s runtime and memory requirements scale polynomially.

Proof: based on exact solution of tropicalized QFT.

— ﬂL,n(pl, ..., P,) can be (in principle) be estimated in polynomial-time in L and n.
(Accuracy still scales worse.)



Fastest algorithms for Feynman integration run in
exponential time.



Fastest algorithms for Feynman integration run in
exponential time.

= Evaluation of individual Feynman integrals quickly becomes
slower than evaluating &, ,(py, ..., p,)-



(b) Illustration of the (L’,n’) case in Algorithm 19.

The algorithm recursively produces metric graphs with the correct
probability distribution. Most graphs will never be generated.



Example computations



Massive ¢ theory in
D = 3, with m?* = 1.

Relations to phenomenon

Known (numerically) upto L < 7/

Table 1: 3-point function computation in massive ¢> theory in D = 3.

~

L samples I'; 3(0,0,0) time/h
1 1-10'% 4.431109-107' +£1.1-107°% 2
2 1-10"  1.047191-10° £5.9-107% 3
3 1-10" 2.902190-10° +£36-10=° 3
4 1-101  8.877142-10° £ 2.7-107% 4
5 1-10'%  2.920635-10' +£24-1073 6
6 1-10'% 1.019640-10°% £24-10"2 6
7 1-10'Y'  3.748502-10° £ 3.3-1071' 7
8 1-10Y  1.440633-10% + 2.1-10° 8
9 1-10Y 5.787627-10° + 2.2- 101 9
10 1-10'% 2.399101-10* 4+ 1.4 - 102 7
11 1-10'Y  1.074911-10° + 2.6-10° 12
12 1-10'Y  4.760706 - 10° 4+ 1.2 - 10% 13
13 1-10'Y  2.235488-10° 4+ 1.0 - 10° 15
14 1-10'Y  1.000354 - 107 4+ 3.3 - 10° 16
15 1-10'%  5.464614 - 107 + 4.0 - 10° 16
16 1-10'% 2.859931-10% 4+ 3.4-10° 17
17 1-10"  1.156947-10° 4+ 3.6 - 107 20
18 1-10''  8.861573-10° + 1.6-10° 20
19 1-10'Y  7.159013-10'° + 3.6-10° 23
20 1-10'Y  2.776484-10'! +5.2-1019 24




Primitive / function
in 4-dim ¢* theory

(Conjectured to be equal
to full MS / function for

large L.)

Relation to the

Known before
(analytically) for L < 7/

With tropical sampling
(humerically) up to

L <18

L  samples Nbprim o) BHEY time/h
3 1.10-100 1.87-10° 1.442497-10' £3.0-10~% 1.679980-10%° + 3.5-10° 0
4 1.10-10° 1.31-10° 1.244281-10% +3.5-10"3 3.432005- 103 4+ 8.9-102 1
5 1.10-10° 1.28-10° 1.698163-10% +5.5-10"2  1.135437-10° + 3.0-10° 1
6 1.10-10° 1.18-10° 2.412932-10* £9.1-10~'  3.958005-10° + 1.1 -10? 1
7 1.10-10'° 1.10-10°  3.709545-10° + 1.6- 10" 1.509371 - 10% + 4.3 - 103 1
8 1.10-10'° 1.04-10° 6.062108-10° + 3.1 - 102 6.179273 - 10° + 1.8 - 10° 2
9 1.10-10 9.80-10% 1.045110-10% £6.2-10%  2.692812- 10! + 8.2-10° 2
10 1.10-10° 9.33-10®%  1.889201-10° + 1.3-10°  1.241497-10' + 3.9-10® 3
11 1.10-10*° 896-10° 3.566923-10'° + 2.8-10° 6.026765-10** + 1.9-10'° 4
12 1.10-10'° 8.66-10® 7.012027-10' +£6.4-10" 3.071324-10'6 + 1.0-10%? 5
13 1.10-10° 8.44-10% 1.431902-10'3 +1.5-10° 1.638982-10'® 4+ 5.4.10'3 6
14 1.10-10'° 8.28-10%® 3.032472-10" + 3.6-10'° 9.142727-10'° £ 3.1-10%° 7
15 3.11-10" 2.31-10'°% 6.655768 - 10° + 2.4-10° 5.323570-10%! + 3.4-10'¢ 249
16 1.10-10° 8.10-10%® 1.512467-10'7 £ 2.4-10'% 3.231993-10%3 + 1.1-10% 11
17 1.10-10'°% 8.08-10% 3.552250-10'% £+ 6.3-10'* 2.044094 - 10%° + 6.9 - 10%° 12
18 1.10-10'° 8.09-10%® 8.632116-10'2 + 1.8-10'% 1.345581 - 107 4+ 4.6 - 10%? 15
19 1.10-10'% 8.12-10% 2.167796-10%! +4.9-10'7 9.211519-10%® + 3.1-10% 19
20 3.00-10" 2.23-10'° 5.624473-10%2 £ 4.0-10'7 6.551806 - 103° + 4.2-10%° 621
25 8.30-10° 6.50-10° 1.066295-103%° 4+ 2.9-10%° 2.060052 - 10%° + 2.5-103° 824
30 1.00-10'' 8.26-10° 4.290822-1037 4+ 1.8-10%3 1.486361-10°° + 1.6-10%* 2032
40 1.00-10'° 8.86-10% 4.946806 - 10°3 + 1.6-10°° 6.283492-107° 4+ 2.0 - 10%6 638
50 1.00-10° 9.26-10% 5.054951-107° 4+ 3.8 -10%7 2.625921 - 1072 + 8.2 - 1087 725

Table 2: Primitive 8 function computation in ¢* theory.



Conclusion and open questions

Tropicalized QFT is a deformed, exactly solvable version of (scalar) QFT.

Gives volume recursions on the moduli space of graphs/tropical curves.

Gives a polynomial-time algorithm for estimation of scattering amplitudes.
Many possibilities for extensions and generalizations (e.g. to non-scalar QFTSs).

New numerical problems need to be tamed: even though sampling works in polynomial time,
perturbative coefficients take exponential time in the relative target accuracy.

What is the non-perturbative nature of tropicalized QFT?

What is the large loop order behavior (tropicalized and non-tropicalized)? (some answers...)
Renormalization of tropicalized QFT? Renormalized sampling?

Does the solution of tropicalized QFT constrain the original”? Bootstrap?

Statistical study of arithmetic properties of Feynman integrals: E.g. average symbol?



