Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

Michael Borinsky¹

Humboldt-University Berlin Departments of Physics and Mathematics

Alexander von Humboldt Group of Dirk Kreimer

Resurgence, Physics and Numbers, 2015

¹borinsky@physik.hu-berlin.de

Table of Contents

1 Introduction

- Motivation
- Zero dimensional Quantum Field Theory
- The Hopf algebra of Feynman diagrams

2 Lattice structure of Feynman diagrams

- From diagram counting to the Hopf algebra
- The incidence Hopf algebra
- Lattice structure in physical QFTs

3 Applications

- Density of primitive diagrams
- Connection to irreducible partitions

4 Conclusions

Why study the combinatorics of Feynman diagrams?

- (Divergent) perturbation expansions in QFTs dominated by number of diagrams.
- Number of generators of the Hopf/Lie algebra of Feynman diagrams.

- What is the simplest way to analyze the combinatorics of Feynman diagrams?
- Zero dimensional QFTs!
- Extensively studied².
- Idea: Replace the path integral by an ordinary integration.

²Cvitanović, Lautrup, and Pearson 1978.

Zero dimensional Quantum Field Theory

• For φ^k -theory in zero dimensions:

$$Z_{arphi^k}(j,\lambda) := \int\limits_{\mathbb{R}} rac{darphi}{\sqrt{2\pi}} \; e^{-rac{arphi^2}{2} + \lambda rac{arphi^k}{k!} + jarphi},$$

where λ 'counts' the number of vertices and j the number of external edges.

This integral is meant to be calculated perturbatively, i.e. by termwise integration:

$$\widetilde{Z}_{\varphi^k}(j,\lambda) := \sum_{n,m\geq 0} rac{1}{n!m!} \int\limits_{\mathbb{R}} rac{d\varphi}{\sqrt{2\pi}} \left\{ e^{-rac{arphi^2}{2}} \left(rac{\lambda arphi^k}{k!}
ight)^n (j arphi)^m
ight\}.$$

Diagrammatically:

$$Z_{\varphi^3} = 1 + \frac{1}{2} \cdot \cdot \cdot + \frac{1}{6} \cdot \cdot \cdot + \frac{1}{4} \cdot \cdot \cdot + \frac{1}{2} \cdot \cdot \cdot + \frac{1}{4} \cdot \cdot \cdot \cdot + \frac{1}{8} \cdot \cdot \cdot + \frac{1}{12} \cdot \cdot +$$

Analogous for Yukawa, QED, quenched QED, QCD, ...

Zero dimensional Quantum Field Theory

Use the exponential formula to obtain the connected diagrams:

$$W(j,\lambda) = \log(Z(j,\lambda)).$$

Diagrammatically:

$$W_{\varphi^3} = \frac{1}{2} \cdot \cdot + \frac{1}{6} \cdot \cdot + \frac{1}{2} \cdot \cdot + \frac{1}{4} \cdot \cdot \cdot + \frac{1}{6} \cdot \cdot + \frac{1}{6} \cdot \cdot + \frac{1}{6} \cdot \cdot + \frac{1}{8} \cdot \cdot \cdot + \frac{1}{12} \cdot - \frac{1}{12} \cdot + \frac{1}{1$$

Calculate the 'classical' field

$$\varphi_c(j,\lambda) := \frac{\partial W}{\partial j},$$

Shift source variable $j \rightarrow j' + j_0$ such that $\varphi_c(j')$ vanishes at j' = 0.

Perform a Legendre transformation to obtain the effective action:

$$\Gamma(\varphi_c,\lambda):=W-j'\varphi_c,$$

Γ is the generating function for all 1PI Feynman diagrams.Diagrammatically:

$$\Gamma_{\varphi^3} = -\frac{1}{2} \bullet \bullet + \frac{1}{6} \bullet \bullet + \frac{1}{4} \bullet \bigcirc \bullet + \frac{1}{6} \circlearrowright \bullet + \frac{1}{12} \bigcirc + \dots$$

 In the following: Parametrize Γ with ħ instead of λ to count loops instead of vertices → Γ(φ_c, ħ).

The Hopf algebra structure of 1PI Feynman diagrams

Starting point for the Hopf algebra of Feynman diagrams:

- *H*^{fg} is the Q-algebra generated by all mutually non-isomorphic 1PI diagrams.
- With Disjoint union as multiplication, a unit u, a counit ϵ
- and the coproduct encapsulating the BPHZ-algorithm:

 $\mathcal{H}^{\mathsf{fg}}$ becomes a Hopf algebra.

 $\blacksquare \ \mathcal{H}^{\mathrm{fg}}$ is equipped with a grading given by the loop number.

$$\mathcal{H}^{\mathsf{fg}} = \bigoplus_{L \geq 0} \mathcal{H}^{\mathsf{fg}(L)}$$

Example

Take all 1PI sub-diagrams of a graph:

Example

Keep only the superficially divergent ones:

- Tool to calculate finite amplitudes: The group of characters, $G_{\mathcal{A}}^{\mathcal{H}^{\mathrm{fg}}}$.
- Consists of algebra morphisms $\mathcal{H}^{fg} \to \mathcal{A}$. With \mathcal{A} a unital algebra.
- \blacksquare Product of $\phi,\psi\in {\it G}_{{\cal A}}^{{\cal H}^{\rm fg}}$ is defined as,

$$\phi * \psi = m_{\mathcal{A}} \circ (\phi \otimes \psi) \circ \Delta.$$

• The unit is
$$u_{\mathcal{A}} \circ \epsilon_{\mathcal{H}^{fg}}$$
.

• The inverse can be expressed using the antipode S on \mathcal{H}^{fg} , $m \circ (S \otimes id) \circ \Delta = u \circ \epsilon$:

$$\phi^{*-1} = \phi \circ S$$

- ϕ denotes the character which maps a Feynman diagram $\in \mathcal{H}^{\mathrm{fg}}$ to its amplitude.
- This amplitude is infinite.
- We are interested in the renormalized amplitude given by,

$$\phi_{\mathsf{R}} := S_{\mathsf{R}}^{\phi} * \phi.$$

•
$$S^{\phi}_{R}$$
 is the 'twisted' antipode defined as

$$S_R^\phi := R \circ \phi \circ S$$

For a multiplicative renormalization scheme.

From diagram counting to the Hopf algebra

Use the simple Feynman rules of 0-dimensional QFT:

$$\phi: \mathcal{H}^{\mathsf{fg}} \to \mathbb{Q}[[\hbar]], \gamma \mapsto \hbar^{|\gamma|}.$$

For a 1PI diagram γ and $|\gamma|$ its loop number.

• Connect to the path integral formulation, e.g. for φ^3 -theory:

$$\frac{\partial^2 \Gamma}{\partial \varphi_c^2} = \phi(X^-) \qquad \qquad \frac{\partial^3 \Gamma}{\partial \varphi_c^3} = \phi(X^{\succ})$$

where

$$X^{-} := 1 - \sum_{\substack{\gamma \text{ 1PI} \\ \operatorname{res} \gamma = -}} \frac{\gamma}{|\operatorname{Aut} \gamma|} \quad X^{\succ} := 1 + \sum_{\substack{\gamma \text{ 1PI} \\ \operatorname{res} \gamma = \succ}} \frac{\gamma}{|\operatorname{Aut} \gamma|}.$$

• Use the toy renormalization scheme: R = id

$$S_R^\phi = S^\phi = \phi \circ S$$

This amounts to 'renormalization of zero dimensional QFT'.Using this the counterterms or Z-factors can be obtained,

$$Z^{-} = S^{\phi}(X^{-})$$
$$Z^{\succ} = S^{\phi}(X^{\succ}).$$

• Explicitly: Using the combinatorial form of Dyson's equation³

$$\Delta X^r = \sum_{L \ge 0} Q^{2L} X^r \otimes X^r |_L$$

with the invariant charge
$$Q := \frac{\chi}{(X^-)^{\frac{3}{2}}}$$
.

$$\Rightarrow Z^{r} = \frac{1}{\phi(X^{r})[\hbar(S^{\phi}(Q)[\hbar])^{2}]} \qquad \forall r \in \{\succ, -\}$$

³Kreimer 2006. M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

- The generating function Z→(ħ) counts primitive diagrams⁴.
 But why is this the case? Does it work for general QFTs?
- ⇒ Study S^{ϕ} .

⁴Cvitanović, Lautrup, and Pearson 1978.

The incidence Hopf algebra of posets

- H^P is the Q-algebra generated by all mutually non-isomorphic partially ordered sets (posets). With a unique smallest element Ô and a unique largest element 1.
- With Cartesian product as multiplication of two posets P_1, P_2 :

$$egin{aligned} &P_1\cdot P_2=\{(s,t):s\in P_1 ext{ and } t\in P_2\}\ & ext{with } (s,t)\leq (s',t') ext{ iff } s\leq s' ext{ and } t\leq t' \end{aligned}$$

and the coproduct⁵

$$\Delta: \mathcal{H}^{\mathsf{P}} \to \mathcal{H}^{\mathsf{P}} \otimes \mathcal{H}^{\mathsf{P}}, \mathcal{P} \mapsto \sum_{x \in \mathcal{P}} [\hat{0}, x] \otimes [x, \hat{1}],$$

where [x, y] is the interval, the subset $\{z \in P : x \le z \le y\}$.

⁵Schmitt 1994.

M. Borinsky (HU Berlin)

Lemma 1⁶

There is a Hopf algebra morphism,

$$\xi: \mathcal{H}^{\mathsf{fg}} \to \mathcal{H}^{\mathsf{P}}, \gamma \mapsto \mathcal{P}^{\mathsf{s.d.}}(\gamma),$$

mapping a 1PI diagram to its poset of divergent subdiagrams, ordered by inclusion, is a Hopf algebra morphism.

$$\begin{array}{ll} \mathsf{For example} \ \forall \gamma \in \mathsf{Prim}(\mathcal{H}^{\mathsf{fg}}): \xi(\gamma) = & | \\ \emptyset & \\ \end{array},$$

or
$$\xi \left(\begin{array}{c} & & \\ & &$$

⁶Borinsky (in preparation).

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

• The map ξ is compatible with the Hopf algebra structure:

$$egin{aligned} &\xi\circ m_{\mathcal{H}^{\mathsf{fg}}}=m_{\mathcal{H}^{\mathsf{P}}}\circ (\xi\otimes\xi)\ &(\xi\otimes\xi)\circ\Delta_{\mathcal{H}^{\mathsf{fg}}}=\Delta_{\mathcal{H}^{\mathsf{P}}}\circ\xi \end{aligned}$$

Example:

The antipode is also compatible:

$$\xi \circ S_{\mathcal{H}^{\mathsf{fg}}} = S_{\mathcal{H}^{\mathsf{P}}} \circ \xi$$

For a subspace H^{fg(L)} ⊂ H^{fg}, ξ the toy Feynman rules φ act as a characteristic function on H^P:

$$\phi(x) = \hbar^{L} \phi' \circ \xi(x) \qquad \forall x \in \mathcal{H}^{\mathsf{fg}(L)}$$

where $\phi' : \mathcal{H}^{\mathsf{P}} \to \mathbb{Q}, \mathsf{P} \mapsto 1$.

- Eventually, we want to calculate $S^{\phi} = \phi \circ S_{\mathcal{H}^{fg}}$.
- Can be obtained in \mathcal{H}^{P} for elements in $\mathcal{H}^{\mathsf{fg}^{(L)}} \subset \mathcal{H}^{\mathsf{fg}}$:

$$S^{\phi} = \hbar^{L} \phi' \circ \xi \circ S_{\mathcal{H}^{\mathsf{fg}}} = \hbar^{L} \phi' \circ S_{\mathcal{H}^{\mathsf{P}}} \circ \xi$$

- $\mu := \phi' \circ S_{\mathcal{H}^{P}}$ is a well studied object, called the möbius function of a poset⁷.
- Especially interesting are möbius functions on lattices.

⁷Schmitt 1994; Stanley 1997.

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

- A lattice L is a poset with with a unique greatest and a unique smallest element, 1, 0 and two additional binary operations:
- The join of two elements $x, y \in L$:

 $x \lor y :=$ unique smallest element $z, z \ge x$ and $z \ge y$

and the meet,

 $x \wedge y :=$ unique greatest element $z, z \leq x$ and $z \leq y$.

More examples

• In φ^4 -theory in 4 dimensions:

This poset is a lattice without a grading.
In φ⁶-theory in 3 dimensions:

This poset is not a lattice.

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

Theorem 1⁸

In all renormalizable QFTs with vertex valency \leq 4, ξ maps Feynman diagrams to lattices.

- \blacksquare Join, \lor , is defined as the union of two subdiagrams.
- Meet, \wedge , is obtained by dualisation.
- \Rightarrow Physical QFTs carry a lattice structure.
 - Encodes the 'overlapping' structure of the divergences.
 - Remark: Diagrams with only logarithmic subdivergences map to distributive lattices⁹.

⁹Berghoff 2014.

⁸Borinsky (in preparation).

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

• Why does $S^{\phi}(X^{\succ})$ count primitive diagrams?

Theorem 2¹⁰

- In a theory with only three-valent vertices, the lattice ξ(γ_ν) has always one coatom for a vertex diagram γ_ν.
- In such a theory, the lattice $\xi(\gamma_p)$ has always two coatoms for a propagator diagram $\gamma_p \neq -\bigcirc$.

¹⁰Borinsky (in preparation).

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

■ Using Rota's Crosscut Theorem¹¹:

$$S^{\phi}\left(\begin{array}{c} \\ \\ \end{array}\right) = \mu\left(\begin{array}{c} \\ \\ \end{array}\right) = 0 \quad \text{and} \ S^{\phi}\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = -1$$

$$\Rightarrow S^{\phi}(X^{\succ}) = 1 - \phi \circ P_{\mathsf{Prim}(\mathcal{H}^{\mathsf{fg}})}(X^{\succ})$$
$$S^{\phi}(X^{-}) = 1 + \frac{1}{2}\hbar \left(1 - \phi \circ P_{\mathsf{Prim}(\mathcal{H}^{\mathsf{fg}})}(X^{\succ})\right),$$

where $P_{\mathsf{Prim}(\mathcal{H}^{\mathsf{fg}})}$ projects to the primitive elements of $\mathcal{H}^{\mathsf{fg}}$.

¹¹Stanley 1997.

Applications

Back to zero dimensional QFT:

$$Z_{arphi^3}(j,\hbar) := \int\limits_{\mathbb{R}} rac{darphi}{\sqrt{2\pi\hbar}} \; e^{rac{1}{\hbar} \left(-rac{arphi^2}{2} + rac{arphi^3}{3!} + jarphi
ight)}.$$

• Can be 'renormalized' by introducing Z factors and shifting the source $j \rightarrow j' + j_0$:

$$Z^{\mathsf{ren}}_{arphi^3}(j',\hbar) := \int\limits_{\mathbb{R}} rac{darphi}{\sqrt{2\pi\hbar}} e^{rac{1}{\hbar} \left(-Z^-(\hbar)rac{arphi^2}{2} + Z^{igstarrow}(\hbar)rac{arphi^3}{3!} + j'arphi + j_0(\hbar)arphi
ight)},$$

• Using a contour integration on a specific order in j',

$$z_{k,n}^{\mathrm{ren}} = \frac{1}{2\pi i} \oint \frac{d\hbar}{\hbar^{1+n}} \frac{\partial^k}{\partial j'^k} Z_{\varphi^3}^{\mathrm{ren}} \big|_{j'=0},$$

coefficients can be extracted.

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

- Asymptotically all diagrams are connected and 1PI¹².
- Therefore the probabilities of a random Feynman diagram to be primitive can be obtained.

30

$$z_{k,n}^{\rm ren} = \frac{1}{2\pi i} \oint \frac{d\hbar}{\hbar^{1+n}} \frac{\partial^k}{\partial j'^k} Z_{\varphi^3}^{\rm ren} \big|_{j'=0},$$

• Using the saddle-point expansion the asymptotic behaviour of $z_{k,n}^{\text{ren}}$ can be analyzed. For instance for the \succ diagrams in φ^3 -theory:

$$\lim_{n \to \infty} \frac{z_{3,n}^{\text{ren}}}{z_{3,n}} = e^{-\frac{10}{3}}$$

with
$$z_{3,n} = \frac{(6n+5)!!}{(2n+1)!(3!)^{2n+1}} = \frac{3!}{2\pi e} \left(\frac{n}{e(3!)^2}\right)^{n+1} + O(n^{-1}).$$

Similar we obtain for

Yukawa fermion scalar vertex:

$$\lim_{n\to\infty}\frac{z_n^{\rm ren}}{z_n}=e^{-\frac{7}{2}}$$

QED fermion photon vertex:

$$\lim_{n\to\infty}\frac{Z_n^{\rm ren}}{Z_n}=e^{-\frac{5}{2}}$$

Quench-QED fermion photon vertex:

$$\lim_{n\to\infty}\frac{z_n^{\rm ren}}{z_n}=e^{-2}$$

- (Quenched) QED primitives can be enumerated by other methods but asymptotics are more difficult.¹³.
- In this case there is a similarity to "irreducible partitions" ¹⁴.
- One result in this direction¹⁵, agrees with the asymptotic calculation for Quench QED.
- Connection between primitive diagrams and irreducible partitions?

¹³Broadhurst 1999; Molinari and Manini 2006.
¹⁴Beissinger 1985.
¹⁵Kleitman 1970.

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

- The lattice structure of Quantum Field Theories is useful to analyze combinatorics of the counterterms.
- I.e. to quantify the divergence stemming from the 'explosion' of diagrams.
- \Rightarrow Could be used for estimates for the asymptotic behaviour of Green's functions, β functions, etc.
 - Explicit results on the number of primitive elements can be obtained in cases with only 3-valent vertices.