
Combinatorics of Feynman diagrams and
algebraic lattice structure in QFT

Michael Borinsky1

Humboldt-University Berlin
Departments of Physics and Mathematics

-
Alexander von Humboldt Group of Dirk Kreimer

Resurgence, Physics and Numbers, 2015

1borinsky@physik.hu-berlin.de
M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT 1



Table of Contents

1 Introduction
Motivation
Zero dimensional Quantum Field Theory
The Hopf algebra of Feynman diagrams

2 Lattice structure of Feynman diagrams
From diagram counting to the Hopf algebra
The incidence Hopf algebra
Lattice structure in physical QFTs

3 Applications
Density of primitive diagrams
Connection to irreducible partitions

4 Conclusions

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT 2



Motivation

Why study the combinatorics of Feynman diagrams?

(Divergent) perturbation expansions in QFTs dominated by
number of diagrams.

Number of generators of the Hopf/Lie algebra of Feynman
diagrams.
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Zero dimensional Quantum Field Theory

What is the simplest way to analyze the combinatorics of
Feynman diagrams?

Zero dimensional QFTs!

Extensively studied2.

Idea: Replace the path integral by an ordinary integration.

2Cvitanović, Lautrup, and Pearson 1978.
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Zero dimensional Quantum Field Theory

For ϕk -theory in zero dimensions:

Zϕk (j , λ) :=

∫
R

dϕ√
2π

e−
ϕ2

2
+λϕk

k!
+jϕ,

where λ ‘counts’ the number of vertices and j the number of
external edges.

This integral is meant to be calculated perturbatively, i.e. by
termwise integration:

Z̃ϕk (j , λ) :=
∑

n,m≥0

1

n!m!

∫
R

dϕ√
2π

{
e−

ϕ2

2

(
λϕk

k!

)n

(jϕ)m
}
.
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Diagrammatically:
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Analogous for Yukawa, QED, quenched QED, QCD, ...
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Zero dimensional Quantum Field Theory

Use the exponential formula to obtain the connected
diagrams:

W (j , λ) = log(Z (j , λ)).

Diagrammatically:

Wϕ3 =
1

2
+
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+
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Calculate the ‘classical’ field

ϕc(j , λ) :=
∂W

∂j
,

Shift source variable j → j ′ + j0 such that ϕc(j ′) vanishes at
j ′ = 0.
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Perform a Legendre transformation to obtain the effective
action:

Γ(ϕc , λ) := W − j ′ϕc ,

Γ is the generating function for all 1PI Feynman diagrams.

Diagrammatically:

Γϕ3 = −1

2
+
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6
+
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4
+

1

6
+
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+ . . .

In the following: Parametrize Γ with ~ instead of λ to count
loops instead of vertices → Γ(ϕc , ~).
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The Hopf algebra structure of 1PI Feynman diagrams

Starting point for the Hopf algebra of Feynman diagrams:

Hfg is the Q-algebra generated by all mutually non-isomorphic
1PI diagrams.

With Disjoint union as multiplication, a unit u, a counit ε

and the coproduct encapsulating the BPHZ-algorithm:

∆ : T → Hfg ⊗Hfg

Γ 7→
∑
γ⊂Γ

γ=
∏
γi

with each γi 1PI and sup.div.

γ ⊗ Γ/γ

Hfg becomes a Hopf algebra.

Hfg is equipped with a grading given by the loop number.

Hfg =
⊕
L≥0

Hfg(L)
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Example

Take all 1PI sub-diagrams of a graph:

P
( )

={
, , , ,

, , , ,

, , ,

}
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Example

Keep only the superficially divergent ones:

Ps.d.
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={

��
���

,
��

���
,
��

���
,
��

���
,

��
���

, , , ,

�
����

,
�
����

, ,

}

M. Borinsky (HU Berlin) Combinatorics of Feynman diagrams and algebraic lattice structure in QFT 11



Example

∆ =
∑

γ∈{ , , , , }
γ ⊗ /γ =

= I⊗ + ⊗ I +

+ ⊗ + ⊗ + ⊗︸ ︷︷ ︸
∆̃
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Tool to calculate finite amplitudes: The group of characters,
GH

fg

A .

Consists of algebra morphisms Hfg → A. With A a unital
algebra.

Product of φ, ψ ∈ GH
fg

A is defined as,

φ ∗ ψ = mA ◦ (φ⊗ ψ) ◦∆.

The unit is uA ◦ εHfg .

The inverse can be expressed using the antipode S on Hfg,
m ◦ (S ⊗ id) ◦∆ = u ◦ ε:

φ∗−1 = φ ◦ S
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φ denotes the character which maps a Feynman diagram
∈ Hfg to its amplitude.

This amplitude is infinite.

We are interested in the renormalized amplitude given by,

φR := SφR ∗ φ.

SφR is the ‘twisted’ antipode defined as

SφR := R ◦ φ ◦ S

For a multiplicative renormalization scheme.
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From diagram counting to the Hopf algebra

Use the simple Feynman rules of 0-dimensional QFT:

φ : Hfg → Q[[~]], γ 7→ ~|γ|.

For a 1PI diagram γ and |γ| its loop number.

Connect to the path integral formulation, e.g. for ϕ3-theory:

∂2Γ

∂ϕ2
c

= φ(X )
∂3Γ

∂ϕ3
c

= φ(X )

where

X := 1−
∑
γ 1PI

res γ=

γ

|Aut γ|
X := 1 +

∑
γ 1PI

res γ=

γ

|Aut γ|
.
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Use the toy renormalization scheme: R = id

SφR = Sφ = φ ◦ S

This amounts to ‘renormalization of zero dimensional QFT’.

Using this the counterterms or Z -factors can be obtained,

Z = Sφ(X )

Z = Sφ(X ).
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Explicitly: Using the combinatorial form of Dyson’s equation3

∆X r =
∑
L≥0

Q2LX r ⊗ X r |L

with the invariant charge Q := X

(X )
3
2

.

⇒ Z r =
1

φ(X r )[~(Sφ(Q)[~])2]
∀r ∈ { , }

3Kreimer 2006.
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The generating function Z (~) counts primitive diagrams4.

But why is this the case? Does it work for general QFTs?

⇒ Study Sφ.

4Cvitanović, Lautrup, and Pearson 1978.
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The incidence Hopf algebra of posets

HP is the Q-algebra generated by all mutually non-isomorphic
partially ordered sets (posets). With a unique smallest
element 0̂ and a unique largest element 1̂.

With Cartesian product as multiplication of two posets P1,P2:

P1 · P2 = {(s, t) : s ∈ P1 and t ∈ P2}
with (s, t) ≤ (s ′, t ′) iff s ≤ s ′ and t ≤ t ′

and the coproduct5

∆ : HP → HP ⊗HP,P 7→
∑
x∈P

[0̂, x ]⊗ [x , 1̂],

where [x , y ] is the interval, the subset {z ∈ P : x ≤ z ≤ y}.

5Schmitt 1994.
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Lemma 16

There is a Hopf algebra morphism,

ξ : Hfg → HP, γ 7→ Ps.d.(γ),

mapping a 1PI diagram to its poset of divergent subdiagrams,
ordered by inclusion, is a Hopf algebra morphism.

For example ∀γ ∈ Prim(Hfg) : ξ(γ) =

γ

∅
,

or ξ

( )
=

γ

µ1 µ2

∅

.

6Borinsky (in preparation).
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The map ξ is compatible with the Hopf algebra structure:

ξ ◦mHfg = mHP ◦ (ξ ⊗ ξ)

(ξ ⊗ ξ) ◦∆Hfg = ∆HP ◦ ξ

Example:

∆̃ = ⊗ + ⊗ + ⊗

ξ : ↓ ↓ ↓ ↓ ↓ ↓ ↓

∆̃ = ⊗ + ⊗ + ⊗
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The antipode is also compatible:

ξ ◦ SHfg = SHP ◦ ξ

For a subspace Hfg(L) ⊂ Hfg, ξ the toy Feynman rules φ act
as a characteristic function on HP:

φ(x) = ~Lφ′ ◦ ξ(x) ∀x ∈ Hfg(L)

where φ′ : HP → Q,P 7→ 1.
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Eventually, we want to calculate Sφ = φ ◦ SHfg .

Can be obtained in HP for elements in Hfg(L) ⊂ Hfg:

Sφ = ~Lφ′ ◦ ξ ◦ SHfg = ~Lφ′ ◦ SHP ◦ ξ

µ := φ′ ◦ SHP is a well studied object, called the möbius
function of a poset7.

Especially interesting are möbius functions on lattices.

7Schmitt 1994; Stanley 1997.
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Lattices

A lattice L is a poset with with a unique greatest and a unique
smallest element, 1̂, 0̂ and two additional binary operations:

The join of two elements x , y ∈ L:

x ∨ y := unique smallest element z , z ≥ x and z ≥ y

and the meet,

x ∧ y := unique greatest element z , z ≤ x and z ≤ y .
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More examples

In ϕ4-theory in 4 dimensions:

ξ

( )
=

This poset is a lattice without a grading.
In ϕ6-theory in 3 dimensions:

ξ

( )
=

This poset is not a lattice.
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Theorem 18

In all renormalizable QFTs with vertex valency ≤ 4, ξ maps
Feynman diagrams to lattices.

Join, ∨, is defined as the union of two subdiagrams.

Meet, ∧, is obtained by dualisation.

⇒ Physical QFTs carry a lattice structure.

Encodes the ‘overlapping’ structure of the divergences.

Remark: Diagrams with only logarithmic subdivergences map
to distributive lattices9.

8Borinsky (in preparation).
9Berghoff 2014.
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Why does Sφ(X ) count primitive diagrams?

Theorem 210

In a theory with only three-valent vertices, the lattice ξ(γv )
has always one coatom for a vertex diagram γv .
In such a theory, the lattice ξ(γp) has always two coatoms for
a propagator diagram γp 6= .

10Borinsky (in preparation).
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Using Rota’s Crosscut Theorem11:

Sφ

  = µ

  = 0 and Sφ
( )

= −1

⇒ Sφ(X ) = 1− φ ◦ PPrim(Hfg)(X )

Sφ(X ) = 1 +
1

2
~
(

1− φ ◦ PPrim(Hfg)(X )
)
,

where PPrim(Hfg) projects to the primitive elements of Hfg.

11Stanley 1997.
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Applications

Back to zero dimensional QFT:

Zϕ3(j , ~) :=

∫
R

dϕ√
2π~

e
1
~

(
−ϕ2

2
+ϕ3

3!
+jϕ

)
.

Can be ‘renormalized’ by introducing Z factors and shifting
the source j → j ′ + j0:

Z ren
ϕ3 (j ′, ~) :=

∫
R

dϕ√
2π~

e
1
~

(
−Z (~)ϕ2

2
+Z (~)ϕ3

3!
+j ′ϕ+j0(~)ϕ

)
,

Using a contour integration on a specific order in j ′,

z ren
k,n =

1

2πi

∮
d~
~1+n

∂k

∂j ′k
Z ren
ϕ3

∣∣
j ′=0

,

coefficients can be extracted.
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Asymptotically all diagrams are connected and 1PI12.

Therefore the probabilities of a random Feynman diagram to
be primitive can be obtained.

12Wright 1970.
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z ren
k,n =

1

2πi

∮
d~
~1+n

∂k

∂j ′k
Z ren
ϕ3

∣∣
j ′=0

,

Using the saddle-point expansion the asymptotic behaviour of
z ren
k,n can be analyzed. For instance for the diagrams in

ϕ3-theory:

lim
n→∞

z ren
3,n

z3,n
= e−

10
3

with z3,n = (6n+5)!!
(2n+1)!(3!)2n+1 = 3!

2πe

(
n

e(3!)2

)n+1
+ O(n−1).
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Similar we obtain for

Yukawa fermion scalar vertex:

lim
n→∞

z ren
n

zn
= e−

7
2

QED fermion photon vertex:

lim
n→∞

z ren
n

zn
= e−

5
2

Quench-QED fermion photon vertex:

lim
n→∞

z ren
n

zn
= e−2
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(Quenched) QED primitives can be enumerated by other
methods but asymptotics are more difficult.13.

In this case there is a similarity to “irreducible partitions”14.

One result in this direction15, agrees with the asymptotic
calculation for Quench QED.

Connection between primitive diagrams and irreducible
partitions?

13Broadhurst 1999; Molinari and Manini 2006.
14Beissinger 1985.
15Kleitman 1970.
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Conclusions

The lattice structure of Quantum Field Theories is useful to
analyze combinatorics of the counterterms.

I.e. to quantify the divergence stemming from the ‘explosion’
of diagrams.

⇒ Could be used for estimates for the asymptotic behaviour of
Green’s functions, β functions, etc.

Explicit results on the number of primitive elements can be
obtained in cases with only 3-valent vertices.
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