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Generalized permutahedra



Permutahedra

Pn = Conv{(σ1, . . . , σn)T ∈ Rn : σ ∈ Sn}
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Suppose a (co)vector y ∈ (Rn)∗ is given.

Question (linear program)

For which point u ∈ Pn is y · u = y1u1 + . . .+ ynun maximal?

Answer

For any σ ∈ Sn that respects the ordering of the y -components:

yσ1 ≤ · · · ≤ yσn

The product y · u is maximized over u ∈ Pn if u = U(σ) given by

Uσk
(σ) = k

because

yσ1Uσ1(σ) + · · ·+ yσnUσn(σ) = yσ11 + yσ22 + · · ·+ yσnn

2



Definition

For generalized permutahedra the answer to linear programming

problem only depends on the ordering of the components of

y ∈ (Rn)∗.
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Surprise feature

The linear programming problem has an efficient solution for

generalized permutahedra.

I.e. U(σ) can be computed in polynomial time in n.
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Literature

• Initial definitions, volumes, invariants, etc:

Postnikov 2005; Postnikov-Reiner-Williams 2006

• Connections linear programming, matroids, Hopf algebras, etc:

Aguiar-Ardila 2017
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... generalized permutahedra are interesting because

• Cool combinatorics (e.g. Lorentzian polynomials)

• Fancy algebra (e.g. Hopf algebras)

• Nice physics (e.g. Feynman integrals)
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Application to integration



Let f (x) ∈ R[x1, . . . , xn].

We want to (numerically) evaluate∫
Rn
+

dx1 · · · dxn
f (x)
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Intermezzo: Monte Carlo integration

Suppose we have a probability measure

µ =
dx1 · · · dxn

w(x)
> 0 with

∫
Rn
+

µ = 1,

and a (efficient) way to sample points x (1), . . . , x (N) ∈ Rn
+ from it.

Then we can (try to) estimate using∫
Rn
+

dx1 · · · dxn
f (x)

=

∫
Rn
+

dx1 · · · dxn
w(x)

w(x)

f (x)
≈ 1

N

N∑
i=1

w(x (i))

f (x (i))
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We need to choose w(x) such that

1. w(x) is ‘similar enough’ to f (x) on Rn
+.

2. we can quickly sample from

µ =
dx1 · · · dxn

w(x)
.
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Tropical approximation

Idea: a ‘tropicalization’ of f (x) as weight function w(x).

N[f ] is the Newton polytope of f (x).

Let

Tropf : y 7→ max
u∈N[f ]

y · u

and

w(x) = exp (Tropf (log x)) ,

where log x = (log x1, . . . , log xn).

Theorem MB 2020: w(x) does a decent job approximating f (x).

Remaining problem: How can we sample from

µ =
dx1 · · · dxn

w(x)
?
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Tropical sampling



Stochastic (in)version of the linear programming question:

Given a polytope P

draw a random covector y ∈ (Rn)∗ with probability proportional to

exp

(
−max

u∈P
y · u

)

(solves the sampling problem for

µ =
dx1 · · · dxn

w(x)

with P = N[f ])

Doable for general polytopes P MB 2020.

But computationally demanding (P has to be triangulated).
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There is a ‘fast’ way to solve the ‘stochastic linear programming

problem’ if P is a generalized permutadron
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More on generalized permutahedra

A boolean function z : 2[n] → R
(i.e. a function from all subsets of [n] = {1, . . . , n} to R)
is supermodular if

z(A) + z(B) ≤ z(A ∩ B) + z(A ∪ B) for all A,B ⊆ [n].

Theorem Aguiar-Ardila 2017

Supermodular boolean functions are in 1-to-1 correspondence to

generalized permutahedra.
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‘Fast’ tropical sampling algorithm for gen. permutahedra Pz

MB 2020

Preprocessing:

Define a boolean function J : 2[n] → R recursively by J(∅) = 1 and

J(A) =
∑
e∈A

J(A \ e)
z(A \ e)

for all A ⊂ [n]
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Algorithm:

Start with A = [n] and κ = 0

1. Draw a random e ∈ A with probability pe = 1
J(A)

J(A\e)
z(A\e)

2. Remove e from A.

3. Set ye = κ.

4. Draw ξ ∈ [0, 1] uniformly and set κ → κ+ 1
z(A) log(ξ).

5. If A ̸= ∅, go back to 1.

Result: A sample y ∈ (Rn)∗ distributed as

exp

(
−max

u∈Pz

y · u
)
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Gives a ‘fast’ integration algorithm

∫
Pn
>0

f (x)

g(x)
Ω

Theorem

If the Newton polytopes of f (x) and g(x) are gen. permutahedra.

And g(x) is completely non-vanishing on Pn
>0.

And the integral exists.

Then it can be evaluated up to δ relative accuracy in time

O(n2n + n2F (n)δ−2),

where F (n) = [time to evaluate f (x)/g(x) for one values of x ].
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Summary

Generalized permutahedral tropical sampling is orders of

magnitude faster than the naive way.

⇒ Fastest algorithm to evaluate Feynman integrals.

Open question

Is there a polynomial time algorithm?

I.e. improve preprocessing runtime of n2n in O(n2n + n2F (n)δ−2)
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