
Tropical Feynman Period integration

Master’s Thesis

Andrea Favorito

afavorito@student.ethz.ch

Institute of Theoretical Physics

ETH Zürich

Supervisors:

Prof. Dr. Charalampos Anastasiou

Dr. Michael Borinsky

March 30, 2023

Acknowledgements

I would like to express my deepest gratitude to my advisor Prof. Dr. Charalampos Anastasiou
and co-advisor Dr. Michael Borinsky. Their mentorship has been invaluable in shaping my
research skills and academic growth.

In particular, Dr. Borinsky’s guidance, weekly feedback, and support have helped me navi-
gate the challenges of the research process and provided me with a deeper understanding of the
field of physics. I am grateful for the opportunity to learn from him and for the ways in which
he has helped me develop as a researcher.

I would also like to thank my mother Alessandra, my father Maurizio and my brother Tati
for their unconditional support, love, and patience throughout my academic journey. Their
encouragement, motivation, and understanding have been a constant source of strength and
inspiration, and I could not have accomplished this without them. My brother’s enthusiasm for
physics has been contagious and has motivated me to delve deeper into the subject.

I would like to thank all my friends, that have made this past few years studying fun and
an enjoyable experience. In particular Marti, that always pushes and helps me become a more
complete person in all aspects.

Last but not least, my heartfelt gratitude goes to my girlfriend Silvia, who has been a
constant source of love, encouragement, and support throughout my academic journey. Her
unwavering belief in me and our life together has given me the strength and motivation to
pursue my passion for physics.

Thank you all for your support and encouragement.

i

Abstract

This thesis investigates the statistical properties and high order behaviour of Feynman periods,
a specific class of Feynman integrals that play an important role in physics. Using the tropical
Monte Carlo quadrature technique developed by Borinsky, we carried out numerical integrations
for 1000 periods for each loop order from 3 to 15. The resulting histogram displays an interesting
distribution at high loop orders, which we inferred with good empirical accuracy as being a
shifted gamma distribution.

We also evaluated the contribution of period integrals to the loop amplitude and found a
factorially divergent dependence on the loop number at the orders considered. The quantity
computed is proportional to the contribution of primitive graphs to the beta function, which is
believed to be the dominant part at high loop orders.

The factorial growth observed seems to corroborate the behaviour conjectured by Panzer
and Borinsky of the constant that normalizes to 1 the expected value of a hypothetical limiting
distribution of Feynman integrals.

Additionally, we show data that empirically supports the correlation between Hepp’s bound
and period discussed in a paper by Panzer.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Feynman graphs and Feynman integrals . 3

2 Schwinger parametrisation and projective integrals 5

2.1 Schwinger parametrisation . 5

2.2 Projective Feynman integral . 9

2.2.1 An illustrative example . 11

3 Monte Carlo integration 13

3.1 Naive Monte Carlo integration . 14

3.1.1 Monte Carlo integration failing . 15

3.2 Tropical approximation . 18

3.3 Sector decomposition . 18

3.4 Tropical sampling algorithm . 21

3.4.1 Tropical integration applied . 23

3.4.2 Tropical sampling sped up . 26

4 Distribution for randomly generated graphs 29

4.1 Generating random graphs . 30

4.1.1 Example . 32

4.1.2 Handling subdivergences . 34

4.2 Distribution of Feynman integrals . 35

4.2.1 Period and Hepp bound relation . 39

4.3 Amplitude . 40

5 Conclusions and outlook 46

A A-1

A.1 Gaussian Integrals . A-1

A.2 Period vs Hepp Bound plot for different loop orders A-2

A.3 Results for fits of the uncertainty . A-4

iii

Contents iv

Bibliography A-5

Chapter 1

Introduction

Quantum field theory (QFT) is the basic tool to understand the subatomic world. In order
to make predictions for any collider experiment, such as those carried out at CERN’s Large
Hadron Collider (LHC), it is necessary to evaluate the cross-sections of a particular scattering
process by computing the scattering amplitude [29]. However, computing quantities such as the
scattering amplitude directly from a QFT is often impossible. Therefore, perturbation theory
is employed to compute approximate expressions; take for instance the following expansion of
the scattering amplitude in terms of the parameter ~:

A(~) =
∞∑
L=0

AL~L. (1.1)

The problem of computing loop amplitudes AL can be mapped to the one of evaluating
mathematical objects called Feynman integrals, by using a set of Feynman rules that allow us
to write the sum above as a sum over Feynman graphs G, which are a collection of edges E(G),
vertices V (G), and external edges Ext(G). Furthermore, the Feynman graphs considered in
the sum above need to be one particle irreducible (1PI), where a 1PI graph is a graph that is
connected and stays so upon deletion of one edge. Unless explicitly stated otherwise, all the
graphs will be considered to be 1PI.

This amounts to the following expression for the loop amplitude:

AL =
∑

L(G)=L

IG
|Aut(G)|

, (1.2)

where the sum runs over all the Feynman graphs G that have loops L(G) = L, and Aut(G),
sometimes denoted Sym(G) in the literature, is called symmetry factor of the Feynman diagram,
and it is the order of the group of automorphisms of the graph. The coefficients IG are the
Feynman integrals mentioned above, and they are the starting point of this thesis. Their
explicit form is shown in eq. (1.8) and it will be discussed in detail below. They are not only
relevant for phenomenological predictions, but play a role in the computation of renormalisation
group functions [36], and recently they have been used for perturbative gravity calculations [1].
Feynman integrals also have applications outside QFT, as they have shown to be relevant for
various branches of pure mathematics [14, 13, 9].

However, Feynman integrals are hard to evaluate analytically and numerically, which poses a
significant bottleneck for testing predictions and analysing results of scattering experiments [20].
The analytical evaluation of Feynman integrals requires the development of advanced mathe-
matical techniques, the most powerful of which currently is the differential equation method
[25, 30]. Other possible methods are reported in books such as [39, 33]. Analytical methods
can fail in some cases, especially if the integrand becomes very complicated, and in these cases
approaches based on numerical integration are the only feasible option.

1

1. Introduction 2

The most popular numerical method for evaluating Feynman integrals is the sector decom-
position approach. This was first introduced by Hepp [21] and then used for Feynman integral
evaluation by Binoth and Heinrich [4]. Lately, a new numerical method based on tropical ge-
ometry [22] by Borinsky [7] showed promising results in the numerical evaluation of Feynman
integrals up to order 17. This powerful numerical method is related to the geometric sector de-
composition approach [23], which is the result of using the sector decomposition on a geometric
footing.

Borinsky’s tropical sampling algorithm makes use of tropical geometry and convex geometry,
more precisely of polytopes, in a broader context than Feynman integrals. But, from chapter
3 of this thesis onwards, we will mostly focus on a specific type of Feynman integral called
period and labelled PG, and applying Borinsky’s method to the specific case of period integrals
does not require any notion of convex geometry. The Feynman graphs associated with period
integrals are primitive, i.e. free of subdivergences, and log-divergent, and we will call them
p-log, as we will see in definition 3.1.

Periods are themselves ubiquitous in theoretical physics, frequently appearing in compu-
tations of renormalisation group functions [36], and operator product expansions [18]. These
types of integrals are also studied in various branches of pure mathematics [11, 12, 14, 9]. It
is conjectured [24] that in the large order regime period integrals give the most contribution
to the β function of a φ4 theory, a particular QFT that will be introduced below. There are
many implications of this conjecture, mainly that the biggest contribution to the divergence of
the β function in the large order regime comes from instantons, semiclassical field configura-
tions, rather than renormalons [17], which are outcomes of renormalisation of certain types of
Feynman graphs at high order.

The main goal of this thesis is to empirically study the large order behaviour mentioned for
the loop amplitude restricted to p-log graphs of the φ4 theory, in formulas:

Ap-log
L =

∑
L(G)=L
G is p-log

PG
|Aut(G)|

. (1.3)

The graphs that are omitted from this sum, if compared with the one of the full loop amplitude
in eq. (1.2), are the one that are not logarithmically divergent or have subdivergences (non-
primitive). Most of the non-primitive graphs, either have tadpoles or bubbles, sometimes called
double edges. These types of subdivergences are represented in fig. 1.1. For a φ4 theory, the
relative number of graphs that are not primitive nor have a tadpole nor a double edge scales
like 1/L2, where L is the loop order [8]. Thus, Ap-log

L does not converge to the value of the
loop amplitude, but it still gives valuable information about the large order behaviour of the
φ4 theory. Furthermore, in [24, Eq. (B1)] it is shown that Ap-log

L defined above is proportional
to the contribution of primitive graphs to the β function of the φ4 theory. Thus, the conjecture
mentioned in the previous paragraph states, up to some prefactors:

βMS
L ∼A

p-log
L for L� 1, (1.4)

where MS indicates the renormalisation scheme used.

The values of Ap-log
L showed a factorial growth for the loop orders considered, that is L <

16, which seems to replicate the analytically expected behaviour for large orders [24, 17]. In
particular, the behaviour inferred for the amplitude was:

Ap-log
L ∼ BLACL+3Γ(L+ 3), (1.5)

where the values of parameters A, B, C can be found in eq. (4.32).

1. Introduction 3

(a) Example of a tadpole on the vertex 0.
(b) Example of a bubble between the vertices 1
and 2

Figure 1.1: In fig. a and b the two main instances where the sub-divergences occur: Tadpoles
and double edges.

In order to numerically estimate the value of (1.3), we implemented an algorithm, outlined
in chapter 4, that randomly generates p-log graphs at a given loop order. The numerical
computations relevant for the statistical analysis were conducted up to order 15 for 1000 integrals
for each order. An interesting result, discussed in section 4.2, is the shape of distribution of
period integrals obtained. This was empirically shown to be:

f(x;A,B, x0) =
βα

Γ(α)
(x− x0)α−1e−β(x−x0), (1.6)

where the expression for the parameters α, β and x0 for 15 loops can be found in eq. (4.15).

Finally, we also analysed the relation between the period and Hepp’s bound HG, an approx-
imated version of the period that bounds PG from above. Its explicit computation is a crucial
step the tropical sampling algorithm. Recent work [28] showed an interesting correlation be-
tween period and Hepp’s bound, which we empirically showed to hold up to 15 orders.

1.1 Feynman graphs and Feynman integrals

Let us now discuss the expression in eq. (1.2) in more detail.

First, we remind the reader the sum in eq. (1.2) runs over the graphs G that have L(G) = L,
where L(G) is the number of loops of the graph G, i.e.

L(G) = |E(G)| − |V (G)|+ C(G) (1.7)

according to Euler’s formula, see for instance [16, Theorem 4.2.9], with C(G) being the number
of the connected components of the graph G. We will consider only connected graphs, unless
explicitly stated otherwise, thus C(G) = 1.

Secondly, let us explicitly give the expression for a Feynman integral IG in a D dimensional
Euclidean spacetime:

IG =
∏
e∈E

∫
RD

dDke

πD/2
1

(k2
e +m2

e)
νe

∏
v∈V \{v0}

δ(D)

(∑
e′av

pe′

)
, (1.8)

where me are the masses and pe the momenta assigned to each edge or external leg e. me is a
positive real parameter, whereas pe is a D dimensional vector with real components. Specifically,
we will denote qe as the external momenta and ke as the internal ones, in formulas

pe(qe, ke) =

{
qe if e ∈ Ext,
ke if e ∈ E.

(1.9)

1. Introduction 4

It is important to note that IG does not depend on the arbitrary direction chosen for the internal
momenta ke in (1.8). The product of delta functions for each vertex v arises due to momentum
conservation of the momenta corresponding to the edges e′ that meet in v, denoted as e′ a v.
One arbitrary vertex v0 has been omitted from this product as an overall external momentum
conservation δ(D)

(∑
e∈Ext qe

)
has been factored out. The parameters νe are called weights or

indices, and they are the power at which each propagator 1/(k2
e + m2

e) occurs. In [34] it was
shown that Feynman integrals are meromorphic functions in the variables νe and D. Sometimes
we are interested in evaluating IG for values of the indices and spacetime dimensions that make
the integral (1.8) divergent. In order to deal with finite quantities, we can employ a technique
called dimensional regularization [37] that makes the resulting expression convergent. This is
achieved by analytically continuing the parameter D = 4 − 2ε, while keeping ε > 0. This
condition is enough to ensure convergence of the period integrals that will be dealt with in this
thesis.

The integral IG in the form reported in eq. (1.8) is not well-suited for a numerical integra-
tion. Thus, in chapter 2 we shall manipulate its expression to obtain the Schwinger parametric
representation which is more convenient for Feynman integral evaluation [27]. From this repre-
sentation we will then derive the projective representation, that thanks to projective geometry
[31, 2] will allow us to manifestly show some interesting geometric properties of the integral. This
last representation will be the starting point for tackling the problem of numerical integration.

In order to numerically compute integrals like (1.8) a Monte Carlo integration is a viable
and advantageous choice given that the integrand has dimension |E| − 1, and the number of
edges |E| is usually large. However, when integrating these type of integrals with probabilistic
methods, the choice of probability density measure is critical to get finite results for both the
numerical value of IG and its uncertainty. These type of integrals often have poles in the
integration domain, which make the variance infinite, but, by changing the probability measure
so that the sampling is more concentrated around the poles, one can get finite results. Such
a transformation can be performed by using techniques inspired by tropical geometry, as it is
discussed in [7] and in chapter 3.

As already mentioned, chapter 4 focuses on estimating the value of Ap-log
L for L < 16 for a

φ4 QFT, which has the Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4, (1.10)

where λ is the coupling constant of the QFT. The vertices of a Feynman graph of this theory
have valency 4, meaning that each vertex will have 4 edges incident to it. The choice of φ4

theory in 4 spacetime dimensions is due to the large amount of existing research and data at
high loop orders.

Chapter 2

Schwinger parametrisation and
projective integrals

2.1 Schwinger parametrisation

The form of the Feynman integral in (1.8) is usually the first one derived and presented in many
textbooks of quantum field theory. However, the Schwinger parameter representation of the
Feynman integral, see textbooks such as [29], is a starting point for many modern applications
[27]. This representation will be derived from the one in equation (1.8). It reads:

IG(q,m) =
∏
e∈E

∫ ∞
0

dxe x
νe−1
e

Γ(νe)

e−φ/ψ

ψD/2
, (2.1)

where ψ and φ are polynomials related to the Feynman graph G. They are sometimes also
denoted as U and F , and are called Symanzik or Kirkoff polynomials in the literature [5]. To
derive their explicit expression, together with (2.1), we shall start with the definition of the Γ
function

Γ(ν) =

∫ ∞
0

dxxν−1e−x.

Then, we can perform the scaling x→ Ax, which gives the result

1

Aν
=

1

Γ(ν)

∫ ∞
0

dxxν−1e−Ax (Re(ν), A > 0), (2.2)

this is called the Schwinger trick. We can make use of this expression to manipulate (1.8) by

1

(k2
e +m2

e)
νe

=
1

Γ(νe)

∫ ∞
0

dxe x
νe−1
e e−(k2e+m2

e)xe .

We can also use the Fourier representation of the delta function

δ(D)(k) =

∫
RD

dDy

(2π)D
eiky,

to write the integral (1.8):

IG(q,m) =
∏
e∈E

∫ ∞
0

dxe x
νe−1
e

Γ(νe)

 ∏
v∈V \{v0}

∫
RD

dDyv

(4π)D/2

×
∏
e∈E

∫
RD

dDke

πD/2
exp

−∑
e∈E

xe(m
2
e + k2

e) + i
∑

v∈V \{v0}

yv

(∑
e′av

pe′

) .

(2.3)

5

2. Schwinger parametrisation and projective integrals 6

This integral is a multidimensional Gaussian integral (see eq. (A.6) in appendix A.1) in the
variables ke and yv.

As stated in section 1.1, it is convenient to pick an arbitrary orientation for the internal
edges E, even if the final value of IG will not depend on the orientation chosen. Having chosen
an orientation, we can define the incidence matrix,

Ee,v =


−1 if the edge e leaves the vertex v

+1 if the edge e enters the vertex v

0 otherwise.

(2.4)

Using this definition, we can manipulate the imaginary part of the exponent of (2.3). We
can separate the sum over the momenta incoming in the vertex v as a sum over the momenta
qe corresponding to external edges and the momenta ke corresponding to internal edges. In
formulas: ∑

v

yv

(∑
e′av

pe′

)
=
∑
v

yv

(∑
e∈Extv

qe +
∑
e∈Ev

Ee,v ke

)
,

where Ev and Extv are the set of all the internal and external edges that meet in the vertex v.
We can now define the vectors k = (ke)e∈E ∈ (RD)|E|, y = (yv)v∈V \{v0} ∈ (RD)(|V |−1) and the
vector

q =

{
qe if e ∈ Eext

0 otherwise,

in such a way that q ∈ RD(|V |−1). We can also define the following matrices to write the
exponent of the Gaussian integration in matrix form: The diagonal matrix

Λ = diag(x1, . . . , x|E|), (2.5)

and the weighted Laplacian matrix L̂

L̂ = ẼTΛ−1Ẽ (2.6)

where Ẽ is the incidence matrix E defined in (2.4) stripped of the column related to the vertex
v0.

Now, as in any Gaussian integration, we need to complete the square, similarly to what is
done in eq. (A.5):

−kTΛk + ikẼy + iqL̂−1L̂y − iyT

2
ẼTΛ−1Ẽ iy

2
− yT

2
L̂−1 y

2
+ qT L̂−1q− qT L̂−1q−

∑
e∈E

xem
2
e =

= −
(

k− i

2
Λ−1Ẽy

)T
Λ

(
k− i

2
Λ−1Ẽy

)
−
(y

2
− iL̂−1q

)T
L̂
(y

2
− iL̂−1q

)
−
∑
e∈E

xem
2
e.

Then, it is possible to explicitly compute the integral using eq. (A.6), which gives the result in
(2.1).

The explicit expression of the Kirkoff polynomials is then

ψ =

(∏
e

xe

)
det L̂

φ =

(∑
e∈E

xem
2
e + qT L̂−1q

)
ψ.

(2.7)

2. Schwinger parametrisation and projective integrals 7

The expression for the ψ and φ polynomials can be further simplified when dealing with con-
nected graphs by using matrix-tree theorem, see [27, Chapter 2],

ψ =
∑
T

∏
e 6∈T

xe

φ = ψ
∑
e∈E

xem
2
e +

∑
F

p(F)2
∏
e6∈F

xe
(2.8)

where the sum runs respectively over all the connected subgraphs T ⊂ G that have the same
vertices as G and do not have any loops, called spanning trees, and over all the spanning
subgraphs F ⊂ G that have 2-connected components, called spanning 2-forests. Let us note
that the polynomial ψ depends only on the parameters xe, thus it is a graph invariant, whereas
φ contains all the information about the kinematics of the system.

Even if the expressions in eq. (2.8) are often used for analytical calculations, the matrix
representation of the polynomials in (2.7) is the most suitable for numerical computations,
which is the central focus of this thesis. In fact, as stated in [7, Section 7.1], the number of
spanning trees grows exponentially with the number of vertices V , thus making a numerical
computation impossible at high loop orders. On the other hand, the computations of matrix
determinants in eq. (2.7) can be done using the Cholesky decomposition, which for a matrix of
size (V −1)×(V −1) takes ∼ O(V 3) time. Further improvements can be achieved by computing
the decomposition making use of a nearly-linear time algorithm outlined in [35].

From the expressions above, it is possible to see that they are both homogeneous functions
in the variables xe, which means

ψ(αx1, . . . , αx|E|) = αdeg(ψ)ψ(x1, . . . , x|E|) where α ∈ R. (2.9)

deg(ψ) is called degree of the polynomial ψ. An explicit computation shows that the two Kirkoff
polynomials have degree

deg(ψ) = L (2.10)

deg(φ) = L+ 1, (2.11)

where L is the loop number of G.

Figure 2.1: Feynman graph associated to the integral in equation (2.12).

Example 2.1. Let us consider the diagram in fig. 2.1. The parameter representation of the
integral related to this graph is:

I(ν1, ν2) =

∫
x1,x2≥0

dx1dx2

Γ(x1)Γ(x2)
xν1−1

1 xν2−1
2

e−φ/ψ

ψD/2
. (2.12)

2. Schwinger parametrisation and projective integrals 8

(a) Spanning trees (b) Spanning 2-forests

Figure 2.2: Spanning trees and spanning 2-forests of the graph in fig. 2.1

We can now use (2.8) to write explicitly the graph polynomials. Let us start by considering
all the spanning trees T of the graph G. These are represented in fig. 2.2b. The expression for
ψ will then be

ψ = x2 + x1.

Similarly, we shall now consider the spanning two forests, reported in figure 2.2a. Then, φ turns
out being

φ = q2x1x2 + (x1 + x2)(x1m
2
1 + x2m

2
2).

Furthermore, it is possible to see that these are in fact homogeneous polynomials of degree 1
and 2 respectively, in accordance with (2.11).

Figure 2.3: Example of Feynman diagram with three incoming particles.

Example 2.2. A slightly harder problem is the one in fig. 2.3. Considering the spanning trees
and spanning 2-forests in fig. 2.4, the two polynomials turn out being:

ψ = x2x3 + x1x2 + x1x3

φ = − (q1(q2 + q3)x2x3 + q2(q1 + q3)x1x3 + q3(q1 + q2)x1x2) + ψ

(
3∑
i=1

xim
2
i

)
=

= q2
1x2x3 + q2

2x1x3 + q2
3x1x2 + ψ

(
3∑
i=1

xim
2
i

)
,

where to get the final expression for φ we used q1 + q2 + q3 = 0, which holds due to momentum
conservation.

(a) Spanning trees (b) Spanning 2-forests

Figure 2.4: Spanning trees and 2 spanning forests of the graph in fig. 2.3

2. Schwinger parametrisation and projective integrals 9

2.2 Projective Feynman integral

The parametric representation can be manipulated further to make the Feynman integral better
suited for an explicit evaluation. This amounts to perform a change of variable so that the
exponential term e−φ/ψ disappears from (2.1). The form that we will obtain by performing
such a transformation, does not manifestly show all the geometric properties of the integral:
We will show that the integral is independent on the specific change of variable performed. This
can be done by using projective geometry and expressing the integral (2.1) as an integral over
the projective space, that will be defined below.

As stated in equation (2.11), the two polynomials ψ and φ are homogeneous of degree L
and L+ 1 respectively. To do so, we shall start by inserting a delta function in the integral by
using the property

1 =

∫ ∞
−∞

dλ δ(λ−H(x)) =

∫ ∞
0

dλ δ(λ−H(x)),

where H(x) is defined to be any hyperplane in xe space, i.e. H(x) =
∑

eHexe with He ≥ 0 not
all zero. To proceed further we can perform the change of variables xe → λxe where λ is a real
parameter. The integral thus becomes

IG =
∏
e

∫ ∞
0

dxe x
νe−1
e

Γ(νe)

δ(1−H(x))

ψD/2

∫ ∞
0

dλ e−λφ/ψλω−1, (2.13)

where ω is the superficial degree of ultraviolet divergence of the graph, defined as

ω(G) =
∑

e∈E(G)

νe − L(G)
D

2
, (2.14)

where this definition can be generalised to subgraphs γ ⊂ G by considering only the edges E(γ)
and loops L(γ) of the subgraph. The superficial degree of divergence captures the behaviour
of the Feynman integral in the UV region, that is when ke → ∞ for e ∈ G. In particular,
a Feynman integral that has all me > 0 is superficially divergent if it has ω(G) ≤ 0. It is
superficially convergent if ω(G) > 0, and all the 1PI subgraphs γ ⊂ G have ω(γ) > 0 [38, 3].
We will return on the issue of convergence in the next chapter.

To compute the integration in λ in (2.13), we can perform the rescaling λ → λφ/ψ, which
gives the result (

ψ

φ

)ω ∫ ∞
0

dλλω−1e−λ =

(
ψ

φ

)ω
Γ(ω).

Overall, the integral will then be

IG =
Γ(ω)∏
e Γ(νe)

∫
R|E|≥0

∏
e

dxe
xe

δ(1−H(xe))

∏
xνee

ψD/2

(
ψ

φ

)ω
. (2.15)

It is possible to simplify this integral further and show explicitly that it is not dependent on
the choice of hyperplane H by using the properties of projective geometry, for further details
see [31, 2, 10]. In particular, the real projective space RPn is given by taking the quotient of
Rn+1 \ {0} under the following equivalence relation:

(x0, . . . , xn) ∼ (λx0, . . . , λxn), for some λ ∈ R \ {0}. (2.16)

Points of RPn can be represented as [x0 : · · · : xn] using a coordinate system called homogeneous
coordinates. Let us also define the positive orthant of real projective space:

RPn+ =
{

[x0, . . . , xn] ∈ RPn
∣∣ xi > 0 for all i = 0, . . . , n

}
. (2.17)

2. Schwinger parametrisation and projective integrals 10

We can manipulate eq. (2.15) so that it becomes an integral over projective space. Let us
start by noticing that the integrand

f(x1, . . . , x|E|) =

∏
xνe−1
e

ψD/2

(
ψ

φ

)ω
is a homogeneous function in xe, as in eq. (2.9), of degree (−|E|). Moreover, the volume form
d|E|x is homogeneous of degree |E|. Thus, the integral (2.15) will overall be invariant under a
rescaling xe → αxe, where α is a constant parameter. This means that the integration variables
do not distinguish between a point (x1, . . . , x|E|) and a rescaled point (αx1, . . . , αx|E|). Using
this and the fact that we are integrating over the simplex

∆ =

(x1, . . . , x|E|) ∈ R|E|
∣∣∣∣ |E|∑
e=1

xe = 1, xe ≥ 0

 ,

we can identify the coordinates in the integral (2.15) as homogeneous coordinates over RP|E|−1
+ .

In fact, by the equivalence relation defined above, when considering a point in projective space

with homogeneous coordinates [x0, . . . , xn] ∈ RP|E|−1
+ , it is always possible to rescale its homo-

geneous coordinates so that their sum is equal to 1, i.e.
∑|E|

e=1 xe = 1. Ultimately, the integral
becomes:

IG =
Γ(ω)∏
e Γ(νe)

∫
RP|E|−1

+

Ω

∏
e x

νe
e

ψD/2

(
ψ

φ

)ω
. (2.18)

Here we defined the canonical form over the projective space

Ω =

|E|∑
e=1

(−1)|E|−e
dx1

x1
∧ · · · ∧ d̂xe

xe
∧ · · · ∧

dx|E|

x|E|
, (2.19)

where d̂x indicates the missing differential. The differential form Ω is well-defined over RP|E|−1
+

as it is homogeneous of degree 0 by construction, hence, it is invariant under the scaling xe → αxe
for α ∈ R. In fact, Ω vanishes when it is integrated over any line that passes through the origin
in R|E|. Equivalently, we can define the vector field

ξ =

|E|∑
e=1

xe∂e

that represents a line passing through the origin, and then verify that the following relation
holds

ξ xΩ = 0,

where x denotes the interior product.

The main point behind the integral representation in equation (2.18) is the fact that it is
manifestly independent of the choice of hyperplane H(xe). This means that we can choose any

affine chart of Schwinger parameters xe and project the integral onto R|E|−1
+ , where

R|E|−1
+ =

{
(x1, . . . , x|E|−1) ∈ R|E|−1

∣∣ xi > 0 for all i = 1, . . . , |E| − 1
}
.

This is in complete analogy to what happens in gauge theories: Fixing a coordinate chart is
like fixing a gauge. For instance, choosing an affine chart such that x|E| = 1, gives the result:

IG =
Γ(ω)∏
e Γ(νe)

∫
R|E|−1
+

|E|−1∏
e=1

dxe
xe

 ∏
e x

νe
e

ψD/2

(
ψ

φ

)ω
. (2.20)

2. Schwinger parametrisation and projective integrals 11

This important result is often referred to as Cheng-Wu theorem in the literature.

The projective form of the Feynman integral will be the starting point to tackle the problem
of numerical integration, as it encapsulates all the geometrical properties of IG. In fact, with
this form of the integral, the numerical evaluation of the integral is reduced to the construction

of a clever way to map random points in a bounded subset of R|E|−1 to points in RP|E|−1
+ . This

problem is not trivial and there are many subtleties, which will be discussed in detail in the
next chapter.

2.2.1 An illustrative example

Let us now consider a simple example of a projective integral. Consider the integral represen-
tation of the Euler beta function

B(ν1, ν2) =

∫ 1

0
dxxν1−1(1− x)ν2−1 =

Γ(ν1)Γ(ν2)

Γ(ν1 + ν2)
. (2.21)

By adding a delta function using the property

1 =

∫ ∞
0

dy δ(1− (x+ y)) (2.22)

similarly to what was done in the previous section, the integral becomes

B(ν1, ν2) =

∫
R2
+

δ(1− (x+ y))
dx

x

dy

y
xν1yν2 =

∫
∆

dx

x

dy

y
xν1yν2 , (2.23)

where ∆ is the simplex given by

∆ =

{
(x, y) ∈ R2

∣∣∣∣x, y ≥ 0, x+ y = 1

}
. (2.24)

This integral is in fact, up to a normalisation factor, the Feynman integral for the bubble graph
in example 2.1 with D = 4 spacetime dimensions and vanishing masses, m1 = m2 = 0.

Let us now represent the previous integral as an integral over projective space. In fact,
in this form it would be manifest that the integral does not depend on the choice of plane
x + y = 1. Thus, we need both the integrand and the volume form to be homogeneous of
degree 0 in the integration variables x and y. To obtain such an expression, we can perform the
rescaling x→ x

x+y and y → y
x+y where (x, y) now are to be taken as homogeneous coordinates

for a point [x, y] ∈ RP1. The integral then becomes∫
∆̃

(
dx

x
− dy

y

)
xν1yν2

(x+ y)ν1+ν2
,

where, after performing the change of variables, the region of integration becomes ∆̃ ⊆ RP1

given by the simplex in projective space that has points [x, y] that have homogeneous coordinates
that are coordinates of a point in ∆, as shown in fig. 2.5, in symbols

[x, y] ∈ ∆̃⇔ (x, y) ∈ ∆.

The definition of ∆ implies that ∆̃ = RP1
+. To show this, we can use an argument identical to the

one in the previous section, specifically that it is always possible to rescale a point represented
by homogeneous coordinates [x, y] ∈ RP1

+ to one point whose homogeneous coordinates sum up
to 1.

2. Schwinger parametrisation and projective integrals 12

Finally, it is worth noticing that the top form over the integration domain R2
+ in eq. (2.23)

becomes the canonical volume form in projective space defined in (2.19), i.e.

Ω =
dx

x
− dy

y
.

On the whole, the projective representation of the beta integral becomes:

B(ν1, ν2) =

∫
RP+

Ω
xν1yν2

(x+ y)ν1+ν2
. (2.25)

Figure 2.5: A visual representation of the one to one correspondence between the elements of
∆ and the ones of RP+: The integration region of (2.23) is outlined in black, and in red some
lines passing through the origin of R2 which correspond to elements of RP+.

Putting the mathematical formalism aside, the relevance of the projective integral (2.25)
lies in the fact that it is evident that we can take any hyperplane in the variables x1, x2 and
project the integral over the real line again. This allows us to get different representations of
the integral (2.21) by only considering different affine charts. For instance, let us choose the
lines x = 1 or y = 1. Considering the first case, the integral becomes

B(ν1, ν2) =

∫ ∞
0

dx

x

xν

(x+ 1)ν1+ν2
.

Here the convenience of the projective integral is manifest. This integral form can be obtained
from the one in (2.21) by performing a change of variables, but with the expression (2.25) the
problem reduces to simply choosing an affine chart. In fact, the freedom in changing variables,
thus giving different integral representations, gets completely absorbed by the properties of
projective geometry.

Chapter 3

Monte Carlo integration

The aim of this chapter is to describe a method that numerically evaluates the integral IG.
As stated in the introduction, a Monte Carlo integration is in general more favourable than
a deterministic method considering that the integral has dimension |E| − 1. In fact, runtime
scales exponentially with the dimension of integration for non-probabilistic methods. This task
can be very daunting as the measure of the projective integral (2.18) cannot be reduced to a
probability measure, and even when the integral gets projected onto RD the integrand can have
poles in the integration domain, making a naive Monte Carlo sampling useless. However, if one
samples points in the domain using an approach inspired by tropical geometry, one can get finite
and consistent results. This approach is based on the tropical approximation of a polynomial;
it is described in [7, 28] and it will be delineated in section 3.2.

Hereafter, we will only consider a specific class of graphs called primitive logarithmically
divergent (p-log) graphs G.

Definition 3.1. A graph G is a p-log graph if:

• It has degree of divergence ω(G) = 0;

• All the proper subgraphs of G are superficially convergent, i.e. ω(γ) > 0 for all γ ⊂ G.

The graphs that respect the second condition are called primitive. The condition ω = 0
implies that the integral associated to the graph is logarithmically divergent. The restriction
to p-log graphs, amounts to the following change for the integral in eq. (2.18):

PG =

∫
RP|E|−1

+

Ω

∏
xνee

ψ(x)D/2
. (3.1)

In the expression above we omitted the pre-factor Γ(ω)∏
e Γ(νe)

. It is interesting to notice that the

overall divergence in the UV region is completely captured by the prefactor Γ(ω). Thus, when
perfoming the analytic continuation of the spacetime dimension to be D = 4 − 2ε, mentioned
in chapter 1, we only require ε > 0. However, we will not consider the issues of logarithmic
divergence of the p-log graphs and will only focus on the explicit evaluation of (3.1), while
always making sure that the graph is subdivergence free.

As stated in the introduction, the integral in (3.1) is called period in the literature, and it is
a graph invariant. One reason why these integrals are relevant, other than the ones mentioned
in ch. 1, is that they are independent on the kinematics of the process as the dependence on the
polynomial φ disappears completely in the integral (2.18). This simplifies greatly the problem
of numerical evaluation.

13

3. Monte Carlo integration 14

3.1 Naive Monte Carlo integration

In this section we will review the basic working principles of Monte Carlo integration, see
textbooks such as [19] for further details. Suppose we want to evaluate an integral over a
bounded domain Σ

I =

∫
Σ
µ f(x),

where µ is a probability density measure, i.e.

µ > 0 on Σ, and

∫
Σ
µ = 1.

To numerically evaluate I we can approximate the integral with the average G(N) of the function
f(x) evaluated in N random points x(i) sampled from the distribution µ, in formulas:

G(N) =
1

N

N∑
i=1

f(x(i)). (3.2)

In fact, it holds that:

E[G(N)] =
1

N

N∑
i=1

E[f(x(i))] =

∫
Σ
µ f(x) = I. (3.3)

This means that we can use G(N) to approximate the integral I. The variance of the average
G(N) is given by

Var[G(N)] =
1

N
Var[f(x)] =

1

N

∫
Σ
µ
(
f(x)− E[G(N)]

)2
. (3.4)

The variance in (3.4) can be numerically estimated using the unbiased sample variance

σ2
I =

1

N − 1

N∑
i=1

(
f(x(i))−G(N)

)2
=

σ2
f

N − 1
. (3.5)

where we defined σf as the standard deviation of the function f , which we can use as an
estimator for the value of

√
Var[f].

From the equations above, we conclude that I can be numerically estimated by G(N) with

an error given by σI =
√
σ2
I . However, a naive Monte Carlo integration does not in general

yield sensible results. For the Monte Carlo integration to correctly estimate I with a finite error,
both the quantities G(N) and Var[G(N)] need to be finite. In order for the variance in equation
(3.4) to give finite results, f(x) needs to be a square integrable function over the integration
domain, i.e. ∫

Σ
µ |f(x)|2 <∞. (3.6)

If this condition does not hold, the variance will be divergent, i.e. Var[G(N)] =∞ by eq. (3.4).
Consequently, the unbiased sample variance σ2

I , used to estimate the error of the numerical
integral, will give finite but non-convergent results.

This problem is particularly relevant for period integrals. In fact, performing a Monte
Carlo integration as described on the integral in eq. (3.1) is not possible. This is because the
differential form Ω is not normalisable, i.e.∫

RP|E|−1
>0

Ω =∞.

3. Monte Carlo integration 15

We can solve this problem by choosing an affine chart to project the integral onto the unbounded

domain R|E|−1
+ , see for instance eq. (2.20). Then, we can perform a change of variables so that

the resulting integration domain is bounded, such as the hypercube [0, 1]|E|. A one dimensional
example would be the map x → x

1+x , where the unbounded domain R+ gets mapped onto
[0, 1]. Performing these steps we would successfully write the integral as an integration over
a bounded domain with a measure

∏
e dxe that is indeed a probability measure. However, in

general the resulting numerical integration would still not give finite results. This is because
the integrand can have poles in the integration domain, meaning that the condition in eq. (3.6)
does not always hold.

We can further illustrate this problem by considering the toy-example discussed in the next
subsection.

3.1.1 Monte Carlo integration failing

Let us consider the integral

I =

∫
[0,1]2

dxdy h(x, y) =

∫
[0,1]2

dxdy
1

x+ y
. (3.7)

This integration can be performed analytically, and it yields the result I = 2 log 2 ' 1.382. As
outlined above, we try to estimate the value of I using the quantity:

G(N)[h] =
1

N

N∑
i=1

h(x(i), y(i)) =
1

N

N∑
i=1

1

x(i) + y(i)
(3.8)

where the points (x(i), y(i)) are sampled from a uniform probability distribution µ in the square
[0, 1]2, defined as

µ =

{
1dxdy if (x, y) ∈ [0, 1]2,

0 otherwise.
(3.9)

In eq.(3.8) we made explicit the dependence on the function h to avoid any confusion in the
rest of the section.

Performing a numerical integration by sampling from a uniform distribution over the in-
tegration domain, we get the results shown in fig. 3.1a. In the first figure the green crosses
represent the results of the numerical integral G(N)[h] for values of N that range from 5 to
100 with increments of 1; it is possible to see that the result of the numerical integration fluc-
tuate heavily around the analytical result, represented by a dashed red line, as N increases.
Furthermore, if we look at the second and third figures, we can see that error of the integrand
σh, represented by gray dots in the second graph, and the error of the integral σI , represented
by blue dots in the third graph, both have values that are finite but do oscillate greatly, and
neither parameter converge to any value. Furthermore, we can try to fit the error σI with the
theoretical 1/

√
N behaviour outlined in eq. (3.5); we can then compare the result of the fit σfith

with the mean of the errors in the second picture, that we will call σh. The fit gives a result:

σfith = 1.33± 0.12,

and it is represented in the third plot of fig. 3.1a by a dashed red line. Even if this result is
compatible with the mean of the errors σh in the second graph, which is

σh = 1.4± 1.2,

by looking at the plot, we can see that the fit is practically worthless. The error of σh is given
by the standard deviation of the data σh, and the fact that it is so relatively high in value tells

3. Monte Carlo integration 16

us that the data is very disperse, hinting at the fact that the variance of h is divergent. We can
confirm this with the analytical computation. Using (3.4), we get

Var[h(x, y)] =
1

N

∫
[0,1]2

dxdy

(
1

x+ y
− 2 log 2

)2

= +∞,

given by the fact that h(x, y) is not a square integrable function. Thus, the estimators σh and
σI will not converge to any specific value.

These results can be compared to a second Monte Carlo integration of the function:

g(x, y) =

{
1 if x, y ≥ 0 and x2 + y2 = 1

0 otherwise.
(3.10)

The analytical integration gives the result:

J =

∫
[0,1]2

dxdy g(x, y) =
π

4
. (3.11)

As g(x, y) is a square integrable function over the integration domain, its variance, computed
with eq. (3.4), is finite:

Var[g(x, y)] =
π

4
−
(π

4

)2
. (3.12)

Let us now analyse the results of a numerical integration, reported in fig. 3.1b. In the first
figure we can see that the points, which represent the value of the numerical estimator G(N)[g],
do indeed converge to the analytical result π/4 as N increases in the same range as the previous
integration. If we look at the second and third plot of fig. 3.1b, we can see that both the error of
the integrand σg and the error of the inegral σJ are now less disperse. In fact, the error σg does

indeed oscillate around its theoretical value
√
π/4− (π/4)2, and we can see that the error of

the Monte Carlo integral σJ exhibits the 1√
N

behaviour which is expected as of eq. (3.5). This

is in contrast to what happens with the third graph of fig. 3.1a, where the error of the integral
never stabilises. We can also perform the same analysis done previously: fitting the function
σfitg /

√
N gives the result

σfitg = 0.4160± 0.0045.

The resulting function in represented in the third plot in fig. 3.1b as a dashed red line. The
parameters obtained from the fit are compatible with the mean of the values σg:

σg = 0.410± 0.039.

In fact the values σfitg and σg are separated by about 1 standard deviation. Note how the
standard deviation of the uncertanties σg is smaller than the previous example, due to the fact
that Var[g] is finite.

A possible solution to the problem of having infinite variance due to poles in the integration
domain is to change the probability distribution so that it cancels the divergence of the inte-
grand. In fact, by performing such a transformation, the sampling will be more concentrated
around the point where the integrand is divergent, as that is the region where the integral gets
most of its contribution. Doing so is not a trivial task for integrals such as the one in eq. (2.18)
and it will be discussed in the next section.

3. Monte Carlo integration 17

N
0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
(N

) [h
]

Value of the integral of h(x, y)
2log2
G(N)[h]

N
0

1

2

3

4

5

6

7

h

Uncertainty of h(x, y)

h

20 40 60 80 100
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I

Uncertainty of the integral
fit

I

(a) Monte Carlo integration for the function
f(x, y) = 1

x+y .

20 40 60 80 100
N

0.00

0.25

0.50

0.75

1.00

1.25

1.50

G
(N

) [g
]

Value of the integral of g(x, y)
/4

G(N)[g]

20 40 60 80 100
N

0.0

0.2

0.4

0.6

0.8
g

Uncertainty of g(x, y)
Analytical

g

20 40 60 80 100
N

0.04

0.06

0.08

0.10

0.12

0.14

J

Uncertainty of the integral
fit

J

(b) Monte Carlo integration that computes the
area of a quarter circle.

Figure 3.1: In subfig. a we have the results for the function h(x, y) = 1/(x + y) which is not
square integrable. In particular, in the first row we can see the values of the numerical integral
(green crosses), and the theoretical value (dashed red line), the second row reports the values
of the uncertainty σh (gray crosses), and the third row the uncertainty of the integral σI (blue
crosses) and a fit with the relation in (3.5). In subfig. b we can see the behaviour of same
quantities for the square integrable function g(x, y), defined in eq. (3.10).

3. Monte Carlo integration 18

3.2 Tropical approximation

The purpose of this section is to introduce the tropical approximation of a general multivariate
polynomial p.

Consider a set of n variables (x1, . . . , xn) = x and a set of indices (e1, . . . , en) = e, then we
can write a general multivariate polynomial as

p(x) =
∑
e

ce

N∏
i=1

xeii =
∑
e

cex
e,

where the sum runs over all those indices such the complex coefficients ce 6= 0. We also defined
the multi-index notation xe =

∏n
i=1 x

ei
i as it was done in [7]. Let us now introduce the following

tropical approximation for the polynomial p:

ptr(x) = max
e,ce 6=0

xe, (3.13)

where the max is taken over the set of indices e such that ce 6= 0.

In the next section we will try to apply the tropical approximation to the period integral
(3.1), in order to try to find a solution to the problem outlined in the previous section. To this
purpose let us introduce the tropical approximation of the polynomial ψ(x) in eq. (2.8):

ψtr(x) = max
T

∏
e/∈T

xe, (3.14)

where the max is taken over all the spanning trees of G. For instance, consider the graph
polynomial in example 2.2, its tropical approximation would be

ψtr(x1, x2, x3) = max(x1x2, x1x3, x2x3).

From the definition of ψtr, it is possible to deduce the following relation:

ψtr(x) ≤ ψ(x). (3.15)

3.3 Sector decomposition

We shall now use the tropical approximation introduced above to solve the problem of poles in
the integration region outlined in section 3.1. Our aim is to use the properties of ψtr to “absorb”
the singularities of ψ. Thanks to the explicit form of the tropical ψtr polynomial shown in (3.14),
we will then be able to manipulate the integral further by splitting the integration region. This
will allow us to carry out a Monte Carlo integration with finite and sensible results.

Let us now use ψtr to manipulate the expression of the period. The integral in eq. (3.1)
factorises as:

PG =

∫
RP|E|−1

+

Ω

∏
xνee

(ψtr(x))D/2
f(x), (3.16)

where we defined

f(x) =

(
ψtr(x)

ψ(x)

)D/2
. (3.17)

The interesting feature of f(x) is that it bounded from above, specifically

f(x) ≤ 1,

3. Monte Carlo integration 19

which follows directly from eq. (3.15). Hence, f(x) does not have any poles, as the singularities
of the polynomial ψ are suppressed by the zeros of its tropical approximation ψtr.

To further simplify this integral we can use a method that goes by the name of sector

decomposition introduced by Hepp in [21]. This amounts to divide the integration region RP|E|−1
+

into different sectors Dσ defined as

Dσ =
{

[xσ(1), · · · , xσ(|E|)] ∈ RP|E|−1
+ | xσ(1) < · · · < xσ(|E|)

}
,

where σ ∈ S|E| is a permutation of the |E| homogeneous coordinates. Thus, the integral can be
expanded as

PG =
∑
σ∈S|E|

∫
Dσ

Ω

∏
e x

νe
e

(ψtr(x))D/2
f(x) =

∑
σ∈S|E|

Iσ where Iσ =

∫
Dσ

Ω

∏
e x

νe
e

(ψtr(x))D/2
f(x). (3.18)

To evaluate each sector integral Iσ, we shall notice that in each sector there is a unique spanning
tree Tσ that minimises the factor xe associated to each edge, called minimal spanning tree. Thus,
in the sector Dσ the function ψtr is given by:

ψtr(x)

∣∣∣∣
x∈Dσ

=
∏
e/∈Tσ

xe. (3.19)

Before explaining how to find the spanning tree Tσ, let us define Gσe as the subgraph formed by
the first e edges in G, in ascending order according to the permutation σ; in symbols:

Gσk = {σ(1), . . . , σ(k)} ⊂ G, (3.20)

with Gσ0 = ∅, the empty graph.

In order to find Tσ one can utilise algorithm 1, that goes by the name “Kruskal’s greedy
algorithm” [26]. To implement this algorithm, one starts by considering an empty set Tσ and
the set of all the edges of G in the order σ, which is labelled Gσ|E|, using the notation defined
above. Then, starting from the first element of the set Gσ|E| and then iterating accordingly,
at each step one needs to add an edge e ∈ Gσ|E| to the set Tσ if it does not increase the loop
number, until Tσ is a spanning tree. This means that the edges inside the spanning tree will
be all those edges e = σ(k) for which it holds L(Gσk) = L(Gσk−1), as these edges do not increase
the loop order of the graph.

Algorithm 1 Kruskal’s greedy algorithm

Create an empty set of edges Tσ = {∅}
Set k = 1
while k ≤ |E| or Tσ is not spanning do

if Tσ ∪ {σ(k)} is a tree then
Add the edge σ(k) to the forest Tσ

end if
Set k = k + 1

end while

As this is one of the crucial points of this derivation, we will discuss an explicit example in
order to convince the reader of the last statement. A graph with an explicit ordering of the
edges is represented in fig. 3.2. For simplicity, let us consider the identity permutation, i.e.
σ(e) = e for any edge e of the graph. In this case we have,

Gσ6 = {1, 2, 3, 4, 5, 6}.

3. Monte Carlo integration 20

We can now apply algorithm 1 to construct the minimal spanning tree Tσ. We can immediately
add the edges labelled 1, 2, 3. Then, edge 4 cannot be added to Tσ, as it will add a loop to
it. Finally, edge 5 gets added to Tσ. Notice that L(Gσ4) = 1, and edge 5 keeps the loop order
constant L(Gσ5) = 1, as in the statement above, i.e. L(Gσ5) = L(Gσ4). This type of mechanism is
completely general: when cycling over the edges, in ascending order, every edge either keeps the
loop number constant, and thus gets added to the spanning tree, or increases the loop number,
and thus it is not added to the tree. For the sake of completion, we shall report the final form
of the minimal spanning tree:

Tσ = {1, 2, 3, 5}.

·
↑Figure 3.2: Example of graph with an explicit labelling of the edges.

As outlined in [28], the statement just discussed implies the edges e = σ(k) that are not in
the minimal spanning tree are the ones for which the loop number increases, that is L(Gσk) =
1 + L(Gσk−1). By eq. (3.19) these are edges are that contribute to ψtr. We can therefore write

ψtr(x)

∣∣∣∣
x∈Dσ

=
∏
e/∈Tσ

xk =

|E|∏
k=1

x
L(Gσk)−L(Gσk−1)

σ(k) , (3.21)

as for the edges that are in the spanning tree the exponent is vanishing, and for the ones in the
spanning tree it gives 1.

Picking an affine chart such that xσ(|E|) = 1, each sector integral Iσ can be written as:

Iσ =

∫
xσ(1)<···<xσ(N)=1

|E|−1∏
k=1

dxσ(k) x
νσ(k)−1−D

2 (L(Gσk)−L(Gσk−1))
σ(k) f(x).

To proceed we can perform the change of variables yk =
xσ(k)
xσ(k+1)

, which yields the result:

Iσ =

∫
[0,1]|E|−1

|E|−1∏
k=1

dyk

 |E|−1∏
k=1

y
ω(Gσk)−1

k

 f(x(y)), (3.22)

where ω(Gσe) is the superficial degree of divergence, defined in (2.14), for the subgraph Gσe .

Finally, we can perform the change of variables ξk = 1
ω(Gσk)y

ω(Gσk)

k , which gives the result

Iσ =
1∏|E|−1

k=1 ω(Gσk)

∫
[0,1]|E|−1

|E|−1∏
k=1

dξk

 f(x(ξ)), (3.23)

where we used the fact that all the ω(Gσk) > 0, as we are considering primitive graphs, that by
definition 3.1 are subdivergence free.

3. Monte Carlo integration 21

As stated above, the integrand f(x(ξ)) does not have any singularities, thus from this
expression it is now possible to perform a Monte Carlo integration as outlined in the previous

section. In fact, we now have the measure
∏|E|−1
k=1 dξk over the hypercube [0, 1]|E|−1, for which

it holds: ∫
[0,1]|E|−1

|E|−1∏
k=1

dξk = 1 and

|E|−1∏
k=1

dξk ≥ 0 in [0, 1]|E|−1, (3.24)

and thus it is a probability measure. To practically implement the Monte Carlo sampling, one
starts by drawing N vectors ξ(i), with i = 1, . . . , N , from the probability distribution above.

Then one computes x
(i)
k (ξ) =

∏|E|−1
l=k

(
ξ

(i)
l

)1/ω(Gσi)
, as these will be the coordinates of the point

in the positive orthonant of projective space, that is x(i) = [x
(i)
1 , . . . , x

(i)
|E|] ∈ RP|E|−1

+ . Finally,
one can compute the following estimator for Iσ

I(N)
σ =

1∏|E|−1
e=1 ω(Gσe)

1

N

N∑
i=1

f(x(i)). (3.25)

In fact, by using eq. (3.3) it follows E[I
(N)
σ] = Iσ.

Finally, to compute the period, one needs to reiterate the Monte Carlo integration described
for each sector Dσ. However, as explained in [7, Section 4], the number of permutations σ grows
factorially with the dimensionality of the integral. In addition, the contribution of each sector
integral Iσ varies greatly, making the evaluation of each one unnecessary. A possible solution,
proposed in [7, Section 5], is to use an importance sampling on the sum of the Iσ integrals in
eq. (3.18), and it will be outlined in section 3.4.

3.4 Tropical sampling algorithm

Let us now write the period (3.1) as:

PG =

∫
RP|E|−1

+

µ f(x),

where we defined the measure on RP|E|−1
+∫
µ =

∫
Ω

∏
xνee

(ψtr(x))D/2
.

This measure is normalisable, as opposed to
∫

Ω. We can thus define the following prefactor

HG =

∫
RP|E|−1

+

Ω

∏
xνee

(ψtr(x))D/2
. (3.26)

This normalisation factor is the tropical approximation of the period, and it is called Hepp’s
Bound in the literature. Its relationship with the period has been studied in [28]. We can find
an explicit expression for the Hepp’s bound by using the sector decomposition as it was done
in the previous section. This amounts to setting f(x) = 1 and repeating the same steps done
above for the integral PG. Overall, we get the following expression:

HG =
∑
σ∈S|E|

HσG, (3.27)

3. Monte Carlo integration 22

where each sector gives the contribution

HσG =
1∏|E|−1

e=1 ω(Gσe)
. (3.28)

We can factorise the period as:

PG = HG
∫
RP|E|−1

+

µtr f(x), (3.29)

where we defined the tropical differential form

µtr = Ω
1

HG

∏
xνee

(ψtr(x))D/2
.

Furthermore, eq. (3.15) implies that PG ≤ HG, which indicates that∫
RP|E|−1

+

µtr f(x) ≤ 1.

We can show that µtr is a probability measure, in fact it holds that:∫
RP|E|−1

+

µtr =
1

HG

∫
RP|E|−1

+

Ω

∏
xνee

(ψtr(x))D/2
= 1, (3.30)

and µtr ≥ 0 for any point in RP|E|−1
+ . Therefore, µtr could allow us to implement a Monte Carlo

sampling algorithm. In particular, let us suppose that we find a way to generate N random
points x(i) from the distribution µtr, then we can evaluate the quantity

P(N)
G =

HG
N

N∑
i=1

f(x(i)), (3.31)

and this will be an estimator for PG, as the average G(N) could be used to estimate the value
of the integral I in section 3.1.

However, now we need to find a way to generate a random sample form µtr that overcomes
the bottleneck of the factorially growing number of permutations. This can be achieved by
implementing an importance sampling in the sum over the permutations: by eq. (3.27), we
can interpret p(σ) = HσG/HG as a probability of choosing a permutation σ. After all, it holds
that

∑
σ p(σ) = 1, and 0 ≤ p(σ) ≤ 1. Thus, one chooses a permutation, and then generates a

random point in RP|E|−1
+ , similarly to how it was done in the previous section: first one draws

a random point ξ from the uniform distribution over the hypercube [0, 1]|E|−1, then computes

xk(ξ) =
∏|E|−1
l=k (ξl)

1/ω(Gσl), and the resulting vector x will be in the desired integration region

RP|E|−1
+ . Finally, one can evaluate the quantity P(N)

G from (3.31). This will be a good estimator
for the period, in fact:

E[PG] = HGE[f(x)] = HG
∑
σ∈S|E|

HσG
HG

∫
[0,1]|E|−1

|E|−1∏
e=1

dξe

 f(x(ξ)) = HG
∫
RP|E|−1

+

µtrf(x)

(3.32)
where in the last step we used eq. (3.28) and (3.23). The equation above proves that this proce-
dure samples from µtr, as we can successfully numerically estimate the integral

∫
RP|E|−1

+

µtrf(x).

The schematics of this algorithm are reported in algorithm 2.

3. Monte Carlo integration 23

Algorithm 2 Tropical sampling algorithm for Feynman periods

for i ∈ 1, . . . N do
Sample a permutation σ with probability p(σ) = HσG/HG.
Draw a random vector ξ ∈ [0, 1]|E|−1 from a uniform distribution.

Compute x
(i)
k (ξ) =

∏|E|−1
l=k

(
ξ

(i)
l

)1/ω(Gσl)
.

Return x(i) = [x
(i)
1 , . . . , x

(i)
|E|] ∈ RP|E|−1

+ .
end for
Return P(N)

G = HG
N

∑N
i=1 f(x(i)).

The main bottleneck of this procedure is that, before implementing the algorithm described
above, one needs to compute a table with all the probabilities HσG/HG of size (|E| − 1)!, and a
table with all the ω(Gσk) for k = 1, . . . , |E| − 1. This preprocessing was already required for the
numerical integration of equation (3.23) described in the previous section, making sampling from
µtr advantageous if only some sector integrals Iσ contribute to most of the period. However,
the preprocessing is still by far the biggest downside of this algorithm; due to the factorial
dependence of the size of the table on the dimension of integration, the numerical integration
becomes impractical at high orders. In [7] there is an interesting solution to this issue that
effectively reduces the factorial dependence to an exponential one. This will be discussed in
section 3.4.2.

3.4.1 Tropical integration applied

Let us now try to apply the tropical sampling algorithm to the integral I in eq. (3.7) discussed
in subsection 3.1.1. Before applying algorithm 2, we need to construct the table of probabilities
p(σ). Thus, we define the tropical approximation of the integral I:

Itr =

∫
[0,1]2

dxdy
1

max(x, y)
, (3.33)

where max(x, y) is the tropical approximation of the polynomial x+ y.

We can explicitly compute the integral above by splitting the integration domain in the two
sectors

D1 =
{

(x, y) ∈ [0, 1]2 |x < y
}
,

D2 =
{

(x, y) ∈ [0, 1]2 |x > y
}
,

which are represented in fig. 3.3.

This implies that the integral splits as

Itr = Itr
1 + Itr

2 where Itr
i =

∫
Di

dxdy
1

max(x, y)
.

Let us now compute I1:

Itr
1 =

∫
D1

dxdy
1

max(x, y)
=

∫
D1

dxdy
1

y

we can perform the change of variables z = x
y , in analogy with the change of variable performed

to derive eq. (3.22), which implies

Itr
1 =

∫
[0,1]2

dzdy = 1.

3. Monte Carlo integration 24

ya

y=x
1-

in
-2x

Figure 3.3: Representation of the two sectors D1 and D2. In D1 we have x < y and in D1 we
have x > y. This splitting of the square [0, 1]2 allows for an explicit computation of the tropical
integral in (3.33).

The integration for I2 is identical and yields the same result. Thus, we get the following result
for Itr:

Itr = Itr
1 + Itr

2 = 2.

Now we can build our table of probabilities of sampling from each sector. These will be
p(σ1) = p(σ2) = 1

2 , where p(σi) is the probability of sampling from the sector D1.

Let us now focus on I again. Before applying algorithm 2, we need to manipulate the integral
to define the probability measure µtr relevant for this problem, as it was done in eq. (3.29) for
the period, so that we can construct a quantity that we can compute numerically that estimates

I, similarly to P(N)
G in equation (3.31). In analogy with eq.(3.16), the integral factorises as:∫

[0,1]2

dxdy

max(x, y)
h̃(x, y) with h̃(x, y) =

max(x, y)

x+ y
, (3.34)

where max(x, y) is the tropical approximation of the polynomial x+y. Then, we can define the
tropical measure

µtr =
1

Itr

dxdy

max(x, y)
,

for which it holds that ∫
[0,1]2

µtr =
1

Itr

∫
[0,1]2

dxdy

max(x, y)
= 1.

We can then write I in the following way:

I = Itr

∫
[0,1]2

µtrh̃(x, y).

Now we can use algorithm 2 to generate N samples (x(i), y(i)), with i = 1, . . . , N , from the
probability distribution µtr, and then evaluate the quantity:

G(N) =
Itr

N

N∑
i=1

h̃(x(i), y(i)). (3.35)

3. Monte Carlo integration 25

As explained in the previous section, this will be an estimator for the integral I. Furthermore,
we can estimate the error of G(N) by using σI defined in eq. (3.5). The results obtained for the
numerical integration are in fig. 3.4.

20 40 60 80 100
N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
(N

) [h
]

Value of the integral of h(x, y)

2log2
G(N)[h]

20 40 60 80 100
N

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

h

Uncertainty of h(x, y)

Analytical
h

20 40 60 80 100
N

0.015

0.020

0.025

0.030

0.035

0.040

I

Uncertainty of the integral
fit

I

Figure 3.4: Results obtained for the tropical integration of I with varying number of samples
N . In the first plot we have the value of the numerical integral (green crosses) compared with
its analytical value (red dashed line). The uncertainties of the integrand σh̃ are represented

in the second plot with gray crosses. The analytical value of the
√

Var[h̃] is represented as a
dashed red line. Finally, in the third plot we can see the uncertainties of the numerical integral
σI (blue crosses) and a fit (red dashed line) with a function ∝ 1/

√
N .

In the first plot of fig. 3.4 we can see the values of G(N), represented as blue crosses, where
N varies in the range [5, 100] with increments of 5. The numerical estimator G(N) has values
distributed around the theoretical value 2 log 2, as in the first plot in fig. 3.1a. A thorough
comparison of these two plots and a direct computation reveals that the integration with the
tropical integration method results in data that is less sparse: The standard deviation is smaller,
and the points are on average closer to the analytical value. If we then focus on the uncertainty
σh̃, we can appreciate the power of the tropical integration: The data does not exhibit the
divergent pattern of the second plot in fig. 3.1a. In fact, it oscillates around the analytical value

given by
√

Var[h̃] ' 0.140, where

Var[h̃] =

∫
[0,1]2

µtr

(
max(x, y)

x+ y
− log 2

)2

=
1

2
− 2 log 2, (3.36)

where we used the fact that ∫
[0,1]2

µtrh̃(x, y) = log 2.

3. Monte Carlo integration 26

Let us now analyse the plot of the uncertainties of the numerical integral σI . We can notice
that the uncertainties are convergent and exhibit the 1/

√
N behaviour expected as of eq. (3.5).

Thus, we can fit the σI with the function σfit
h̃
/
√
N , and this yields the result

σfit
h̃

= 0.1338± 0.0014

which is statistically compatible with the analytical result. We can also compute the mean
value and the standard deviation of the σh̃

σh̃ = 0.136± 0.011,

which is also compatible with the analytical value, and with the results of the fits σfit
h̃

Note
that the observation that the uncertanties σh̃ are less sparse is reflected in the value of their
standard deviation, which is an entire order smaller than the standard deviation of σh in the
example in fig. 3.1a.

Overall, the data generated with the tropical integration algorithm, shows the same features
as the integration of the function g(x, y) in eq. (3.10). In fact, by a direct comparison with the
plots in fig. 3.1b, we can see that the overall pattern for σI and σh̃ is similar, which explicitly
points out the fact that the tropical integration produces results which are qualitatively identical
to a (convergent) Monte Carlo integration for a square integrable function.

3.4.2 Tropical sampling sped up

The problem of computing PG is thus still constrained by the dimensionality of the integral, as
the table of probabilities has to be computed and kept in the memory. In [7] it was shown that
the preprocessing can be sped up using the following recursion

JG(γ) =
∑
e∈γ

JG(γ \ e)
ω(γ \ e)

(3.37)

for all subgraphs γ ⊂ G where we set Jr(∅) = ω(∅) = 1. In this recursion, we start with
a subgraph γ, and at each step we remove an edge e and compute the superficial degree of
divergence according to eq. (2.14) of the resulting subgraph γ \ e. By repeating this process for
all the edges e ∈ γ, one finds the value of the function JG(γ).

This function is interesting as the original problem of computing all the probabilitiesHσG/HG
can be mapped to the one of computing all the JG(γ) with γ ⊂ G. To show this, we can start
by showing that

JG(G) = HG =
∑
σ∈S|E|

1∏|E|−1
e=1 ω(Gσe)

. (3.38)

To prove this statement, let us first explicitly explain the definition of the JG(G) function
in eq. (3.37). One starts by considering Gn = G, with n = |E|, and then one sums over all the
edges en ∈ Gn, computes 1/ω(Gn−1), and considers the subgraph Gn−1 = Gn \ en, and then
iterates the same procedure again for all the n edges of the graph. We can write this recursion
explicitly as

JG(G) =
∑
en∈Gn

1

ω(Gn−1)

∑
en−1∈Gn−1

1

ω(Gn−2)
· · ·

∑
e1∈G1

1

ω(G0)
=
∑
en∈Gn

· · ·
∑
e1∈G1

1∏|E|−1
k=1 ω(Gk)

(3.39)
where we used the fact that G0 = ∅. Then, we note that a permutation σ is a bijection Gσk → γ
where |E(γ)| = k. This means that fixing a bijection σ is equivalent to fixing one edge e ∈ γ

3. Monte Carlo integration 27

and another bijection σ′ from Gσ
′
k−1 → γ′, where γ′ is the subgraph given by removing the edge

e from γ, i.e. γ′ = γ \ e. Thus, we can effectively map the sums over the edges en, . . . , e1 to the
sum over the permutations σ, which means that we get the expression on the right-hand side
of eq. (3.38), and thus prove the statement.

The equality proven allows us to focus only on the quantity in eq. (3.37). In particular,
instead of computing the table of probabilities p(σ), we can compute the table of values of
JG(γ) for all the subgraphs γ ⊂ G, which are 2|E|. This last statement follows from the fact
that we defined a subgraph of G as a subset of edges of G; thus, the set of all the subgraphs
of G is the powerset of the edges, denoted as 2E , and hence the number of subgraphs is the
dimension of the power set, which is 2|E|. This means that the preprocessing necessary for the
Monte Carlo integration is now reduced to a table of size 2|E|, instead of (|E| − 1)!.

Now let us modify the part of algorithm 2 that samples from µtr with alg. 3. We start
by considering the full graph γ = G and a number κ that is set to 1. Instead of choosing a
permutation σ, we pick a random edge e with probability pe = 1

JG(γ)
JG(γ\e)
ω(γ\e) , and set the e-th

coordinate of the point in projective space to be κ. Then, we pick a random real number in the
domain [0, 1] and set κ to be κξ1/ω(γ). One iterates this steps until γ = ∅, and returns the sample
x = [x1, . . . , x|E|] in projective space. This is virtually identical to choosing a permutation σ and

then computing xe =
∏|E|−1
i=e (ξi)

1/ω(Gσi) where ξ is a random vector in the hypercube [0, 1]|E|−1.
In fact, by choosing the edges with probability pe, we are effectively “building” a permutation
σ, where the element σ(|E(γ)|) will be e, with γ being the subgraph at the step where we
picked the edge e. Finally, as it was done previously, after generating N samples from µtr, one

evaluates the numerical integral P(N)
G in eq. (3.31).

Algorithm 3 Tropical sampling algorithm.

Set γ = G and κ = 1.
while γ 6= ∅ do

Pick a random e ∈ γ with probability pe = 1
JG(γ)

JG(γ\e)
ω(γ\e) .

Remove e from γ.
Set σ(|E(γ)|) = e.

Set x
(i)
e = κ.

Pick a uniformly distributed random number ξ ∈ [0, 1].
Set κ← κξ1/ω(γ).

end while
Return x(i) = [x

(i)
1 , . . . , x

(i)
|E|] ∈ RP|E|−1

+ and σ = (σ(1), . . . , σ(|E|)) ∈ S|E|.

To convincingly prove that generating samples according to the algorithm above is equivalent

to integrating with the algorithm 2, we can show that P(N)
G evaluated with points generated

with alg. 3 correctly estimates the period. This amounts to show:

E[f(x)] =
∑
en∈Gn

1

JG(Gn)

JG(Gn \ en)

ω(G \ en)
· · ·

∑
e1∈G1

1

JG(G1)

JG(G1 \ e1)

ω(G1 \ e1)

∫
[0,1]n−1

(
n−1∏
k=1

dξk

)
f(x(ξ)),

where we set n = |E| to avoid cluttering the notation and Gk−1 = Gk \ek, as it was done above.
By using the recursion in (3.37) and the result in (3.38), we get

E[f(x)] =
1

HG

∑
en∈Gn

· · ·
∑
e1∈G1

1

ω(Gn) · · ·ω(G1)

∫
[0,1]n−1

(
n−1∏
k=1

dξk

)
f(x(ξ)). (3.40)

Finally, we use eq. (3.28) and map the sum over the edges to a sum over the permutations

3. Monte Carlo integration 28

σ, as it was done above, to get:

E[f(x)] =
∑
σ∈SE

HσG
HG

∫
[0,1]n−1

(
n−1∏
k=1

dξk

)
f(x(ξ)),

which yields the same result as eq. (3.32).

As stated above, algorithm 3 has the clear benefit of having to a faster preprocessing, if
compared to the naive algorithm 2. In fact, The table with the values of JG(γ) has 2n entries,
and it can be computed in O(n2n) steps by using the recursion in (3.37). This allows us to carry
out computations at a higher loop order while being less limited by memory requirements. In
[7], this powerful tool allowed for computations of period integrals up to 17 loop orders, which
would be practically impossible with a naive Monte Carlo integration.

In the next chapter we will try to use this technique to study statistical properties of period
integrals at high loop orders by computing a high number of periods (a thousand) up to L = 15.

Chapter 4

Distribution for randomly generated
graphs

In this chapter we will focus mostly on a φ4 QFT. As mentioned in chapter 1, the Feynman
rules for the Lagrangian in eq. (1.10) imply that we shall only consider graphs that have vertices
with 4 valencies, that is, graphs where each vertex has 4 lines attached to it. Examples of φ4

graphs are in figures 4.2 and 4.6. We will also focus on p-log graphs, unless explicitly stated
otherwise, like in the examples in fig. 4.2, which will be discussed in section 4.1.1. We will also
set the edge weights νe, defined in the introduction, to be all 1. This means that according to
equation (2.14) for any graph G we will have:

ω = |E| − D

2
L.

The main goal of this chapter is to find a way to numerically estimate the p-log loop am-
plitude in (1.3), that we will label AL to avoid clutter in the notation, for loop orders L < 16.
Given that the number of graphs increases factorially in the loop order, it becomes impossible
to compute AL directly using the expression in eq. (1.3). However, we can estimate its value by
randomly generating L loops graphs G with a probability p(G) proportional to their symmetry
factor |Aut(G)|, and then evaluate the mean value of the periods PG, in formulas:

E[PG]|L =
∑

L(G)=L

PG p(G) ' ZL
∑

L(G)=L

PG
|Aut(G)|

= ZLAL, (4.1)

where the sum runs over all those graphs that have loop order L, and we defined ZL as the
normalisation factor of p(G) limited to the graphs with L loops, i.e.

ZL =
∑

L(G)=L

1

|Aut(G)|
. (4.2)

In section 4.1, we will show how to implement the algorithm, necessary to conduct the
analysis on AL, that generates a graph with probability

p(G) = Z−1
L

1

|Aut(G)|
, (4.3)

where G has L loops.

Practically, one generates a random graph G with this algorithm, and then, using the method
described in the previous chapter, numerically evaluates the Feynman period PG related to the
graph, and averages over the resulting values PG. Finally, to get the value of AL one would
need to divide the result by the normalisation factor ZL, but computing it can be extremely

29

4. Distribution for randomly generated graphs 30

hard due to the factorial dependence of the number of graphs on the loop order. Thankfully, in
[6, Section 6.3] it is shown that for φ4 theory for L� 1,

ZL∼
e−15/4

√
2π

(
2

3

)L+3

Γ(L+ 3)

(
36 +O

(
1

L

))
. (4.4)

This result allows us to estimate the values of AL. In section 4.2 we will show the numerical
results of this computation, and we will discuss the behaviour of the amplitude as the loop order
changes. Furthermore, we will also analyse the distribution of PG changing the loop order, and
the behaviour of the uncertainty of E[PG]|L. In this chapter we will suppress the L label for
the expected value to avoid clutter in the notation.

4.1 Generating random graphs

For the purpose of finding an algorithm that generates a graph with a probability proportional
to 1/|Aut(G)|, we shall give a combinatorial definition of a Feynman graph G.

Definition 4.1. A Feynman graph G is a set of half-edges H = {1, . . . , |H|} along with:

• A set of vertices V , which are subsets of half-edges with more than 2 elements, in symbols

v ∈ V ⇔ v = {h1, . . . , hN} ⊂ H and |v| > 2;

• A set of external vertices V ext, which are subsets of half-edges with 1 element;

• A set of external legs Ext which are pairs of vertices and external vertices, where at least
one of the elements is in V ext, in symbols

e ∈ Ext⇔ e = (v1, v2) ⊂ H and v1 or v2 ∈ V ext;

• A set E of pairs of vertices, called edges.

The number of elements in any vertex v ∈ V is called valency of v. From the definition
above we can deduce that vertices with 1 or 2 valencies are not allowed.

(a)

9 8

03

I 2

X
5z

0
- 7

~, 3
6

5

(b)

Figure 4.1: In subfig. a, example of a graph defined with definition 4.1; in subfigure b the same
graph represented with the common graph theory notation.

We can intuitively show that this definition is equivalent to the one reported in most QFT
[29, Chapter 1] and graph theory books [16, Chapter 1], by showing the example in fig. 4.1. Let

4. Distribution for randomly generated graphs 31

us focus on fig. 4.1a. First we pictorially represent the half-edges H as black lines and label
them as 1, 2, . . . , 18 = |H|. The half-edges are then grouped into vertices, drawn as dashed red
lines, and external vertices, drawn as dashed gray lines. Lastly, pairs of half-edges are connected
and thus form either an edge, represented by thick blue line, or an external leg, represented by a
thick green line; if both the half-edges in the pair are elements of a vertex, they form an edge, if
at least one of the two is an element of an external vertex, then they form an external leg. This
example corresponds to the graph drawn in fig. 4.1b, where in the usual labelling v1, v2, v3 ∈ V
are vertices, 1, 2, 3 ∈ E are edges and 4, . . . , 9 ∈ Ext are external legs.

Considering that the sum in (4.1) concerns graphs with a fixed loop L, we should try to
express the number of half-edges |H|, the number of edges |E| and vertices |V | as functions of
L. We will do so for graphs that have all vertices with fixed valency N and |Ext| external legs.
For these graphs the number of half-edges |H| can be computed both as

|H| = N |V |+ |V ext|, (4.5)

and as
|H| = 2(|E|+ |Ext|). (4.6)

The first equation comes from the fact that each vertex will contribute with N half-edges,
and each external vertex with 1 half-edge. The second equation follows from considering the
fact that each edge or external leg is a pair of half-edges. We can thus write

N |V | = 2|E|+ |Ext|, (4.7)

where we used the fact that the number of external legs and external vertices is the same, i.e.

|V ext| = |Ext|. (4.8)

By using equation (4.7), together with Euler’s formula in eq. (1.7), we can relate the number of
vertices to the number of loops and external legs:

|V | = 2

N − 2

(
L+

|Ext|
2
− 1

)
. (4.9)

Using again Euler’s formula we can also find the number of edges:

|E| = 1

N − 2
(N(L− 1) + |Ext|) . (4.10)

Hence, we can determine the number of half-edges, by using either eq. (4.5) or (4.6).

We can now tackle the problem of generating random graphs with L loops, with vertices
that have valency N , with a probability that follows equation (4.3). A simple algorithm to do
so, is to draw a graph using definition 4.1 while connecting the half-edges randomly: We start
by generating the sets of vertices and external vertices of size |V |, computed with eq. (4.9),
and |V ext|, respectively. Each element of V is an N -tuple that contains N half-edges and each
element of V ext is a 1-tuple that contains one half-edge. Then, all the half-edges are labelled as
it was done in the example above. Let us now generate two empty sets of edges E and external
legs Ext. To create edges and external legs, one can draw two random integers σ1, σ2 in the
range [1, |H|], where |H| is computed according to eq. (4.5). Then, the vertices v1, v2 are paired
together, where v1, v2 are the vertices that contain the half-edges that have the label respectively
σ1 and σ2. Upon checking that the pair p = (v1, v2) is not in E nor in Ext, p is added to the
set Ext if either v1 or v2 is an external vertex, it is added to E otherwise. The process of
generating random pairs of half-edges is reiterated until 2(|E| + |Ext|) = |H|. Finally, this
algorithm returns the set of edges and external legs. This procedure is schematically reported
in algorithm 4.

4. Distribution for randomly generated graphs 32

Remark 4.2. This algorithm can produce disconnected graphs. But as stated previously, only
connected graphs are relevant in our analysis; thus, the BFS algorithm [15, Section 22.2] was
implemented to check whether a generated graph is connected, the disconnected ones were
rejected.

Algorithm 4 Random generation of a graph with L loops, N -valent vertices and |Ext| external
legs.

Generate a set of N -tuples V with |V | = 2
N−2

(
L+ |Ext|

2 − 1
)

elements.

Generate a set of 1-tuples V ext with |V ext| elements.
Generate N half-edges for each v ∈ V .
Generate 1 half-edge for each v ∈ V ext.
Label all the |H| = N |V |+ |Ext| half-edges h = 1, . . . , |H|.
Generate two empty sets E, Ext.
while 2|E|+ 2|Ext| < |H| do

Draw two random integers σ1, σ2 in the range [1, |H|].
Create the pair p = (v1, v2) where σi ∈ vi, with i = 1, 2.
if p /∈ e, ∀e ∈ E,Ext then

if v1 or v2 ∈ V ext then
Add (v1, v2)→ Ext.

else
Add (v1, v2)→ E.

end if
end if

end while

4.1.1 Example

Let us now discuss an example that numerically shows that algorithm 4 produces a graph with
probability according to eq. (4.3) for L = 2. In this example we will focus on Feynman graphs for
a φ4 interaction, thus, with vertices that have valency N = 4. To make an explicit computation
of the symmetry factors and the normalisation factor ZL possible, we shall only consider graphs
with 2 external legs. As we will show in the next section, for a φ4 theory at this loop order there
are no p-log graphs, but in this example we will consider 1PI, connected graphs, and we allow
for subdivergences, as we will not compute the Feynman integral associated to the graphs. With
this considered, all the graphs allowed at this loop order are the ones in fig. 4.2. An explicit
computation of the symmetry factors gives the following results:

|Aut(G1)| = 1

4
, |Aut(G2)| = 1

4
, |Aut(G3)| = 1

6
.

By eq. (4.2), the normalisation factor turns out being:

ZL=2 =
1

|Aut(G1)|
+

1

|Aut(G2)|
+

1

|Aut(G3)|
=

2

3
.

Thus, p(G3) will be:

p(G3) =
1

4
.

To numerically check that algorithm 4 produces graphs according to the above result, we
can use this algorithm to generate M graphs and then compute the ratio

r =
#(G3)

M
,

4. Distribution for randomly generated graphs 33

"I1
higotothe

(a) Graph G1.

:
-

-qz

(b) Graph G2.

Eat

2 0
kz

f 3
-

⑧ ⑧ ⑧ ⑧

-- =
>

9 k3 92
->

(c) Graph G3.

Figure 4.2: Diagrams at L = 2 with |Ext| = 2 with 4-valent vertices.

where #(G3) is the number of occurrences of the graphs G3. In fact, the ratio r3 should approach
the probability p(G3) for large M . This test was executed for values of M between 100 and
5× 106, and the result are reported in fig. 4.3. We can see that the ratio r, represented in the
y axis, approaches the theoretical probability of 1/4, represented as a red line, as M , reported
in the x axis, increases. This confirms the fact that the algorithm 4 generates graphs according
to (4.3).

101 102 103 104 105 106

#graphs

0.20

0.25

0.30

0.35

0.40

0.45

0.50

#G
 /

#g
ra

ph
s

p(G) = 1/4

Figure 4.3: Behaviour of the frequency of occurrences of the graph G3 (blue line). As the
number of total graphs generated M increases. It approaches the theoretical value of 1/4 (red
line).

4. Distribution for randomly generated graphs 34

4.1.2 Handling subdivergences

In order to compute the amplitude AL we focus on p-log graphs, as defined in 3.1. However,
algorithm 4 can generate graphs G that have subdivergences, ω(G) 6= 0 or can be not 1PI.
Checking for all these three conditions implies that one has to compute the superficial degree of
divergence for all the 2|E| subgraphs of G, compute ω(G) and check the one-particle reducibility
by checking for the number of connected components of E subgraphs, and if the graph turns out
to not be p-log, it has to be rejected and another random graph needs to be generated. In this
section we will show that by taking into account some features of period graphs, we can reduce
the number of subgraphs that we need to check to

(|E|
4

)
, thus effectively making the algorithm

that generates random graphs faster.

Let us start by plugging eq. (1.7) and (4.7) into (2.14), and setting all the indices νe = 1,
then we get

ω = |E| − D

2
L =

(
D

N
− D

2
+ 1

)
|E|+ D

2

(
Ext

N
− C

)
. (4.11)

Due to the restriction to a φ4 theory in 4 spacetime dimensions, we can write D = 4, and
N = 4. We can then use these conditions together with the fact that we only consider connected
graphs, i.e. C = 1, and plug them into (4.11), which gives us

ω(G) =


−1 if G has 2 external legs,

0 if G has 4 external legs,

> 0 if G has 6 or more external legs.

(4.12)

This means that a graph will be log-divergent only if it has |Ext| = 4. This consideration limits
the type of graphs that we need to generate and makes us avoid the check for ω(G).

Let us now deal with the subdivergences. We can first notice that eq. (4.11) holds for the
subgraphs γ ⊂ G as well, where ω(γ) depends on E = E(γ), the edges of the subgraph, and
Ext = Ext(γ), the external legs of γ. The external legs Ext(γ) are pairs of vertices where one
of the two elements is v ∈ V (γ) and the other is in v′ ∈ V ext(γ). The set of external vertices
of the subgraph has elements that either are external vertices of G, V ext(G), or vertices of G
that are not in γ. Pictorially speaking, the external legs of the subgraph γ are obtained by
“cutting in half” the edges that connect γ to the rest of the graph. Thus, eq. (4.12) implies the
divergent subgraphs are the ones given by “cutting” 2 or 4 edges, see fig. 4.4a and 4.4b, and
that are connected.

(a) Example of a linear sub-divergence. (b) Example of a logarithmic sub-divergence.

Figure 4.4: In fig. a and b all the possible divergent subgraphs that can be generated, and thus
excluded from the statistical analysis.

This means that to exclude the non-primitive graphs, we need to check
(|E|

2

)
+
(|E|

4

)
subgraphs

instead of 2|E|. But we can improve this further, by noticing the fact that by checking the

4. Distribution for randomly generated graphs 35

log-subdivergences, we implicitly check for the linear subdivergences, i.e. the ones that have
ω(γ) = −1, and we also check that the graph is 1PI, thus making us avoid |E| more checks. As
explained above, when checking for all the possible log-subdivergences, one constructs all the
possible subgraphs given by “cutting” 4 edges; if the graph is not 1PI, among these subgraphs
there will be one similar to the one represented in fig. 4.5a: We can cut 1 edge that links the
two components that become disconnected, the edge between the vertices 0 and 1 in the figure,
and 3 other edges, for instance 3 of the ones that link vertex 2 to the rest of the disconnected
subgraph. Thus, the graph in fig. 4.5a gets rejected just by checking for log subdivergences.
This excludes |E| checks for 1PI graphs. We have a similar pattern for linear subdivergences:
While checking for log-divergences, 2 out of 4 cuts are performed for the edges that connect
the divergent subgraphs, and thus the resulting subgraph will be disconnected, and thus it gets
rejected. An example of this mechanism is represented in fig. 4.5b: one cuts the edges that
connect the vertices 0, 1 and 3 and 4, while the other 2 cuts are performed for edges inside the
subgraphs, for instance we can cut 2 of the 4 edges of the vertex 2, and the subgraph generated
is disconnected.

15 March 2023 11:52

(a)

15 March 2023 11:52

(b)

Figure 4.5: Representation of a non 1PI graph, in subfig. a, and of a graph with a linear
subdivergence, in subfig. b. The red dashed lines represent the “cuts” that one can perform to
check that the graph needs to be rejected.

There are two mainly occurring instances where divergent subgraphs are generated, shown
in fig. 1.1a and 1.1b. These subgraphs are called tadpoles and bubbles, respectively. Due to the
high probability of these two subgraph being generated, it was computationally favourable to
check for their presence beforehand.

4.2 Distribution of Feynman integrals

Let us now discuss the results obtained. We generated 1000 random graphs for each loop order L
in the range 3 to 15. The distribution of PG for L < 15 is shown in fig. 4.7, and the distribution
for L = 15 is represented in fig. 4.8. By looking at fig. 4.7 one can notice that for low loop
orders there are few different values of PG, this is due to the fact that for small L there are not
many p-log graphs. For instance at L = 3, there is only one p-log graph, represented in fig. 4.6,
and thus the histogram has only one column.

The computations were run on the Euler cluster, that has nodes equipped with 2 64-core
AMD EPYC 7742 CPUs, each with 512 GB of DDR4 memory clocked at 3200 MHz. The
computations for L = 15 took ∼ 7 days for 1000 graphs divided in 3 groups. Each group had
assigned 10 cores, to make use of the parallelization implemented in the code attached to [7].
The evaluations for L = 15 were on average the longest, as there is an exponential dependence,
mentioned in the previous chapter, of the runtime of each integral with the dimension of the
integrand. The computations for higher loop orders were also the most resource heavy, due to
the exponential scaling of the computations of the J(G) table with the size of the graph, and
required an average of 15 GBs of RAM.

4. Distribution for randomly generated graphs 36

Figure 4.6: The only primitive graph for L = 3.

It is interesting to notice that as L increases, the distribution becomes more and more
peaked around the left side of the plot, and then quickly decreases towards 0. Furthermore, the
position of the peak changes almost quadratically with L, even if there does not seem to be a
specific correlation between the position and the loop number.

The overall shape of the distribution can be inferred by plotting a histogram for the variable
x = log(PG/minPG), where the minPG is the minimum value of the periods for a fixed loop
order. The shape of the distribution of this variable for L = 15 is plotted in 4.9, and it is shaped
like a shifted gamma distribution:

f(x;α, β, x0) =
βα

Γ(α)
(x− x0)α−1e−β(x−x0). (4.13)

The parameters α and β are called shape and rate, respectively.

In order to find the best parameters of the gamma distribution to fit the plot in fig. 4.9, we
used the gamma.fit function of the stats module from the library scipy of Python. The method
implemented for fitting into the gamma.fit function is the maximum likelihood estimation (MLE)
method. It is worth noting that the fit is done for normalised data, which means that the
frequencies are rescaled so that the total area of the histogram is 1. The rescaling factor can
be computed by multiplying the width of the bins for their height, and then summing over all
the bins. To compute the covariance matrix of the parameters fitted, we can employ a result
in statistics [32, Theorem 5.6] that proves that the covariance of some vector of parameters ~θ,
obtained with the MLE method, is of the order of the inverse of the Fisher information matrix,
defined as:

I(θ)n,m = −nEθ
[

∂2

∂θn∂θm
log f(x; ~θ)

]
,

where n is the number of occurrences of the independent occurrences x of the variable X, and
Eθ is the expected value with respect to X. Thus, we can write:

cov(~θ)n,m ∼ (I(θ)−1)n,m (4.14)

where cov(~θ)n,m is the covariance matrix of the parameters. The results of the fit for the
parameters α, β, x0 are:

α = 7.11797± 0.00052

β = 4.245958± 0.000022

x0 = −0.216087± 0.000029

(4.15)

where the parameters have covariance

covα,β = 1.6× 10−7

covα,x0 = −5.7× 10−8

covβ,x0 = −3.4× 10−8.

(4.16)

4. Distribution for randomly generated graphs 37

7.1 7.2 7.3 7.4
G

0

200

400

600

800

1000
fre

qu
en

cie
s

L = 3

20.5 21.0 21.5
G

0

200

400

600

800

1000

fre
qu

en
cie

s

L = 4

52 53 54 55 56
G

0

100

200

300

400

500

600

700

800

fre
qu

en
cie

s

L = 5

80 100 120 140 160
G

0

100

200

300

400

500

fre
qu

en
cie

s

L = 6

200 300 400 500
G

0

50

100

150

200

fre
qu

en
cie

s
L = 7

500 750 1000 1250 1500 1750
G

0

25

50

75

100

125

150

175

fre
qu

en
cie

s

L = 8

1000 2000 3000
G

0

10

20

30

40

50

60

70

80

fre
qu

en
cie

s

L = 9

0.5 1.0 1.5 2.0
G ×104

0

20

40

60

80

100

120

140

160

fre
qu

en
cie

s

L = 10

0.5 1.0 1.5 2.0 2.5 3.0
G ×104

0

20

40

60

80

100

120

fre
qu

en
cie

s
L = 11

2 4 6
G ×104

0

20

40

60

80

100

120

140

fre
qu

en
cie

s

L = 12

0.5 1.0 1.5
G ×105

0

20

40

60

80

100

120

fre
qu

en
cie

s

L = 13

0 1 2 3 4
G ×105

0

20

40

60

80

100

120

140

fre
qu

en
cie

s

L = 14

Figure 4.7: Distribution of IG for different loop orders for primitive random graphs.

The covariance and uncertainty of the parameters was computed according to (4.14).

The resulting distribution, scaled back by multiplying f(x;α, β, x0) by the normalisation
factor mentioned above, is represented by a red line in fig. 4.9. The fit is sound, as underlined

4. Distribution for randomly generated graphs 38

0 1 2 3 4 5 6 7 8
G 1e5

0

20

40

60

80

100

fre
qu

en
cy

L = 15

Figure 4.8: Distribution of PG for L = 15.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log(G/min(G))

0

5

10

15

20

25

30

35

40

fre
qu

en
cy

Figure 4.9: Fit of the distribution of PG in logarithmic coordinates for L = 15.

by the value of the reduced Pearson’s χ2 [32]:

χ2/ν = 1.043 ∼ 1, (4.17)

where ν are the number of degrees of freedom of the fit; in this instance ν = 62, and this value
is given by the difference of the number of bins (65) of the histogram in fig. 4.9 and the number
of parameters (3).

4. Distribution for randomly generated graphs 39

4.2.1 Period and Hepp bound relation

In chapter 3 we introduced the Hepp’s bound HG, and we showed that its computation is a
crucial step in the tropical sampling algorithm. Furthermore, we mentioned that the inequality
PG ≤ HG holds, and follows from the definition of ψtr in (3.19). In the spirit of [28], we checked
for other possible correlations between HG and PG. We were able to replicate Panzer’s results
for a power law fit at 7 loop orders, as it is shown in the left plot of fig. 4.10, where the position
of each point is given by the value of the Period and Hepp’s bound for a particular 7 loop p-log
graph. The red line represents the result of the fit with the function f(x;A,B) = AxB, where
the best parameters are:

A = (3.985± 0.018)× 10−7

B = 1.34903± 0.00038
(4.18)

which are compatible with Panzer’s results for the same fit. We mimicked this analysis up to
15 loop orders, and noticed that the power law fit was not a good fit for L > 12. As an example
we can see the fit with the function f , represented as a red curve, for L = 15 in the right plot
of fig. 4.10. This same plot (HG vs PG) can be found for all loop orders in appendix A.2. A
better curve to fit the data was found to be

g(x;A,B,C) = A log(x)B + C, (4.19)

with the parameters:
A = (1.94± 0.25)× 10−46

B = 35.492± 0.039

C = (−6.76± 0.96)× 102.

(4.20)

However, even if this behaviour offers some improvements over the power law fitting, it still
fails the χ2 test for L > 12, for instance at 15 loops we have χ2/ν ' 21 � 1, where ν are the
degrees of freedom of the fit.

The parameters obtained from the fits with the functions f and g are reported in appendix
in table A.1 and A.2.

As explained in [28, Section 5.1], we can also compare different loop orders by setting:

ξ(G) =

(
log(HG/2)

L(G)− 1
,

logPG
L(G)− 1

)
, (4.21)

where we used Panzer’s notation. The points ξ(G) for all the loop orders from 6 to 15 are
shown in fig. 4.11. The large amount of data, consisting of 10000 points, shows a remarkable
correlation, which can be confirmed by fitting the points with the curve

f(x;A,B) = A(log(x))B. (4.22)

The curve fitting procedure results in the parameters:

A = (247.908± 0.015)× 10−2

B = (−56.1671± 0.0087)× 10−2,
(4.23)

and the resulting curve is represented in fig. 4.11 by a red line. The good agreement of the
fitting curve with the data is confirmed by the χ2 test which gives a result of

χ2/ν ' 0.87.

As Panzer outlines in his paper, the relation between the Hepp’s bound and the period
is not always monotone, meaning that there are some G1, G2 for which P(G1) ≥ P(G2) and
H(G1) ≤ H(G2). Nonetheless, we showed that there seems to be a correlation between these
two objects, at least up to 15 loops.

4. Distribution for randomly generated graphs 40

1.0 1.2 1.4 1.6 1.8
G ×105

200

250

300

350

400

450

500

G
Loops = 7

0.5 1.0 1.5 2.0 2.5 3.0 3.5
G ×1011

0

1

2

3

4

5

6

7

8

G

×105 Loops = 15

AxB

A(log(x))B + C

Figure 4.10: Each point has coordinates given by the value of HG and PG for the same graph
G. In the left plot, we can see points corresponding to graphs with 7 loops and in the right plot
graphs with 15 loops. The point exhibit an interesting correlation, that has a relation that can
be inferred either with the power law fit (red line), or with the fit with the function g(x;A,B,C)
defined in eq. (4.19).

1.65 1.70 1.75 1.80 1.85 1.90 1.95
log(G/2)
L(G) 1

0.7

0.8

0.9

1.0

1.1

lo
g(

G
)

L(
G

)
1

Figure 4.11: An interesting correlation between Hepp’s bound and period. Each point in the
graph has coordinates given by ξ(G) in eq. (4.21). These points exhibit a remarkable correlation
that can be empirically inferred by fitting the data with the function f(x;A,B) = A(log(x))B.
The fit is shown as a red line.

4.3 Amplitude

We shall now discuss the behaviour of the expectation value of the distribution of Feynman
integrals E[PG] and of the amplitude AL.

4. Distribution for randomly generated graphs 41

We can estimate the value of E[PG] by using the average I
(M)
L of the values of PG weighted

with the inverse squared of their uncertainty σ[PG], in formulas

E[PG] ' I(M)
L =

1

σ2
L

M∑
n=1

P(n)
G

σ[P(n)
G]2

, (4.24)

where n = 1, . . . ,M is an index that labels the different values of the periods related to the
M = 1000 random graphs generates with algorithm 4, and the prefactor σ2

L is the variance of

the estimator I
(M)
L defined as

σ2
L =

M∑
n=1

1

σ[PG]2
. (4.25)

In the remainder of the section we will not distinguish between E[PG] and the estimator I
(M)
L ,

and we will use them interchangeably.

The values E[PG] for L > 9 are represented by blue dots in fig. 4.12. Their relatively

uncertainties σL/E[PG], with σL =
√
σ2
L, are of the order ∼ 10−5, and they are therefore not

represented.

The behaviour of E[PG] is relevant as it can be related to CL, the normalisation constant of
a conjectured limiting distribution of Feynman integrals for large L, in formulas

lim
L(G)→∞

C−1
L(G)

∫
RP|E|−1

+

Ω

∏
e x

νe
e

ψG(x)D/2

(
ψG(x)

φG(x)

)ω(G)

, (4.26)

where the normalisation constant CL is defined so that it sets the expectation value of the
distribution to 1.

To relate CL and E[PG], we start by considering the probability of sampling a particular
value IG from the limiting distribution, which we can write as

p(IG) =
(
Z

(L)
I

)−1 IG
|Aut(G)|

,

where Z
(L)
I is a normalisation constant so that

∑
L(G)=L p(IG) = 1. Therefore, we can use

eq. (1.2) to show that

Z
(L)
I =

∑
L(G)=L

IG
|Aut(G)|

= AL.

By definition CL normalises the expectation value of the distribution of IG to one, which implies
that

CL =
Z

(L)
I

ZL
.

Thus, by using eq.(4.1),
CL = AL/ZL = E[PG],

which means that we can infer the behaviour of CL for L� 1, by studying E[PG] in the same
large loop regime. In [7] it was outlined that it is possible to compute the value of CL using
non perturbative methods, and this yields the result:

CL =
4e−3γE
√

2πA6
L

5
2

(
3

2

)L+3

, (4.27)

4. Distribution for randomly generated graphs 42

10 11 12 13 14 15
L

0

1

2

3

4

5

6

[(
G
)]

×104

Figure 4.12: Curve fit for the numerical values of E[PG]. The data (blue crosses) exhibits an
exponential behaviour, which is qualitative confirmed by fit (red line) with the function f(L)
in eq. (4.28).

where γE is the Euler-Mascheroni constant and A is the Glaisher-Kinkelin constant. We can
now compare this with the results of a fit of the points in fig. 4.12. The data was fitted according
to behaviour

f(L;B, δ, C) = BLδKL+3 (4.28)

which returned the following parameters:

δ = 2.17± 0.51

B = 0.052± 0.034

K = 1.563± 0.063

(4.29)

with covariance:
σδ,B = −0.017

σδ,K = −0.032

σB,K = 0.0021

(4.30)

By confronting these results with eq. (4.27), one can notice that the numerical values of the
parameters are all in . 1σ from the theoretical ones. The fit obtained is represented in fig. 4.12
by a red line.

Let us now focus on the amplitude AL. We can compute the values of this quantity by using
eq. (4.1), where ZL is computed with (4.4). These values are shown in figure 4.13. A glance
at the plot already hints to a factorially divergent behaviour, which can be precisely showed by
fitting the points with the function

f(L;A,B,C) = BLACL+3Γ(L+ 3). (4.31)

4. Distribution for randomly generated graphs 43

10 11 12 13 14 15
L

0.0

0.5

1.0

1.5

2.0

2.5

A L
×1014

Figure 4.13: The blue crosses represent the values of the p-log loop amplitude AL, which are
given by deviding E[PG], in fig. 4.12, by the normalisation factor ZL, in eq. (4.4). The results
obtained were fitted with a factorially divergent behaviour, and the resulting curve is represented
by a red line.

This fit, represented by a red line in fig. 4.13, returns the following results for the parameters
A,B,C:

A = 6.43± 0.47

B = (6.8± 3.9)× 10−7

C = 0.815± 0.032

(4.32)

these parameters have covariance:

σA,B = −1.8× 10−7

σA,C = −0.015

σB,C = 1.2× 10−8.

This fit gives convincing results about the factorial divergence of the amplitude AL. However,
it is important to mention that both this and the one for E[PG] in fig.4.12 are to be taken
qualitatively. In fact, even if the results in eq. (4.29) are in agreement with (4.27), and the
factorial behaviour of the amplitude is confirmed by the parameters in eq. (4.32), the theoretical
behaviour of CL and ZL are valid only in the large order regime, and L ∈ [10, 15] is a range not
high enough to appreciate precisely the effects that occur at L→∞.

Furthermore, we analysed the behaviour of the uncertainty related to the Monte Carlo
integration by considering the uncertainty of E[PG], which we labelled above as σL. As it was
discussed in sec. 3.1, the uncertainty of a Monte Carlo integral I behaves like σI ∝ 1√

N
for fixed

4. Distribution for randomly generated graphs 44

number of sampling points N . Hence, by linearity, this behaviour, that holds for all the period
integrals PG, will carry over to σL. We can thus write:

σL(N) =
g(L)√
N
, (4.33)

where we denoted explicitly the dependence onN , and that the proportionality constant between√
N and σL will in general be a function in L, that we called g(L). To infer the behaviour of

g(L) we can fix the value of N and see how σL[N] changes for different loops orders. Then, by
changing the value of N , we can check if the behaviour inferred is still valid, and if the results
are consistent with one other. The results of this process for different values of N are shown
in appendix in fig. A.2. In each plot L takes values in the range [3, 12]; this range is smaller if
compared to the range used in previous discussions, as the time necessary for each integration
scales linearly with the number of sampling points and for each value of N and L, one needs
to do 1000 integrations. However, even with a smaller number of loops, we can see that the
uncertainties show a quadratic growth. Thus, we fitted the function

g(L) = A+BL2, (4.34)

where A and B are parameters. The fits for different Ns yield the results shown in appendix in
tab. A.3. The coefficients obtained have values that are not sparse, and they have average and
standard deviation of

Ā = (2.3146± 0.0014)× 10−2

B̄ = (7.304± 0.023)× 10−4
(4.35)

where Ā, B̄ indicates the standard deviation for the parameters A and B respectively. These
values, compared with the uncertainty of each parameter, indicate a solid agreement of the
different fits.

We can take this analysis further by noticing that from eq. (4.33), if we rescale the points
σL(N) in fig. A.2 by

√
N , the data should all follow the g(L) behaviour. The rescaled data

is shown in fig. 4.14, by dots with different colours for each value of N . As expected, we can
see that it is very hard to differentiate between the points that have same values of L and
correspond to different Ns. We can also fit the parameters of g(L) in (4.34), and we get

Afit = (2.315± 0.014)× 10−2 (4.36)

Bfit = (7.304± 0.019)× 10−4 (4.37)

with covariance
σA,B = −2.3× 10−10. (4.38)

We can notice that these results are quantitatively similar to the ones in tab. A.3 and to their
mean in eq. (4.35), which hints to the soundness of the inferred behaviour.

4. Distribution for randomly generated graphs 45

2 4 6 8 10 12
L

0.04

0.06

0.08

0.10

0.12

0.14

L(N
)

Fit
N = 50000.0
N = 100000.0
N = 500000.0
N = 1000000.0
N = 2500000.0
N = 5000000.0
N = 7500000.0
N = 10000000.0

Figure 4.14: Uncertainties σL rescaled by
√
N , for different values of N . In red a fit with the

function g(L) that has a quadratic dependence on the loop order.

Chapter 5

Conclusions and outlook

The goal of this thesis was to study numerical techniques to integrate Feynman integrals, in
particular Feynman periods, and analyse their main statistical properties at high loop orders.

In order to tackle the problem of numerical integration, we needed a form of the Feynman
integral that was favourable for this type of problem. Thus, in chapter 2 we manipulated the
Feynman integral to derive first the parametric representation, which is one of the most common
starting points for modern applications, and then the projective representation, that thanks to
the properties of projective geometry, allowed us to write compactly the Feynman integral while
explicitly showcasing some of its most relevant geometric properties.

In chapter 3, we showed that Monte Carlo integration fails for functions that are not square
integrable, which can be the case for Feynman integrals, as the integrand can have poles in the
integration domain. The solution to this problem is a different sampling algorithm, inspired by
tropical geometry, which allows us to numerically compute period integrals and get finite results.
A further improvement of this algorithm was also discussed, which guarantees an exponential,
rather than factorial, scaling of the problem with the dimensionality of the problem.

The tropical sampling algorithm explained, allowed us to integrate Feynman periods effi-
ciently at high loop orders, meaning that we were able to study statistical properties of these
integrals at these orders. We choose specifically the φ4 QFT in 4 space-time dimensions, due
to the high amount of data and analytical properties available in the literature for this the-
ory. By generating random graphs with an algorithm inspired by a combinatorial definition
of a graph, we managed to estimate the p-log scattering amplitude up to 15 loop order. The
quantity computed is particularly relevant as it is proportional to the contribution of primitive
graphs to the beta function, which is conjectured to approximate the growth of the full beta
function for large orders. These computations showed a factorially divergent behaviour, that
seems to corroborate the recent computations [24] and analysis of beta function contributions
[17] for a φ4 QFT. Furthermore, we have found the shifted gamma distribution in eq. (4.13)
to be a possible distribution of values of period integrals, at least up to 15 loop orders, with
a very good numerical accuracy. In addition, we showed that the large order behaviour of the
normalisation constant of a hypothetical limiting distribution of Feynman integrals reported in
[7], holds up to L = 15. We also expanded some results of [28], by showing that the power law
correlation for the Hepp’s bound and period shown in Panzer’s paper does not hold to higher
loop, but the correlation between HG and PG, both rescaled by a factor that depends on the
loop order, holds up to 15 loop order and follows a logarithmic behaviour. Finally, we showed
that the uncertainty of the period computed with the tropical integration, follows a quadratic
behaviour.

Further data at higher loop order would be beneficial to confirm all these result, in particular
the shape of the inferred behaviour of the distribution of Feynman periods. Considering that in
[7] it is shown that computations of Feynman integrals are feasible until 17 loop order, further
improvements in this could be achieved with more computation time. In particular for this loop

46

5. Conclusions and outlook 47

order a quick calculation shows that this computation would take less than 2 weeks, splitting
the 1000 integrals in 5 groups, with each integration taking 256 GB of RAM and on average 11
hours. The large amount of memory required for running the 5 groups in parallel (1.28 TB) is
the biggest bottleneck for this solution.

Appendix A

A.1 Gaussian Integrals

Gaussian integrals are arguably one of the most important tools in quantum field theory calcu-
lations. The basic one dimensional Gaussian Integral is:∫

R
dx e−x

2
=
√
π. (A.1)

We can then perform rescaling x→
√
a(x+ b), which gives us:∫
R
dx e−a(x+b)2 =

√
π

a
. (A.2)

This expression can easily generalised to the case of N dimensional vectors. Let x ∈ RN and
A ∈ MatN (R) positive definite. Then the following result holds:∫

RN
dNx exp

{
−1

2
xTAx

}
=

√
(2π)N

detA
. (A.3)

If we introduce a “source term” JT · x where J is an N dimensional vector, we need to
complete the square in the exponent by doing the following:

−1

2
xTAx+ JTx =

1

2
xTAx+ (A−1J)TAx− 1

2
(A−1J)TAA−1J +

1

2
JTA−1J = (A.4)

= −1

2
(x−A−1J)TA(x−A−1J) +

1

2
JTA−1J. (A.5)

By doing the substitution x→ y = x−A−1J in the integral, gives us:∫
RN

dNx exp

{
−1

2
xTAx+ JTx

}
= e

1
2
JTA−1J

∫
RN

dNy e−
1
2
yTAy =

√
(2π)N

detA
e

1
2
JTA−1J . (A.6)

A-1

A-2

A.2 Period vs Hepp Bound plot for different loop orders

1.0 1.2 1.4 1.6 1.8
G ×105

200

250

300

350

400

450

500

G

Loops = 7

0.6 0.8 1.0 1.2 1.4
G ×106

400

600

800

1000

1200

1400

1600

1800

G

Loops = 8

2 4 6 8
G ×106

1000

1500

2000

2500

3000

3500

4000

G

Loops = 9

2 4 6 8
G ×107

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

G

×104 Loops = 10

1 2 3
G ×108

0.5

1.0

1.5

2.0

2.5

3.0

G

×104 Loops = 11

0.5 1.0 1.5 2.0
G ×109

1

2

3

4

5

6

7

G

×104 Loops = 12

0.2 0.4 0.6 0.8 1.0 1.2
G ×1010

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

G

×105 Loops = 13

2 4 6
G ×1010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G

×105 Loops = 14

2 4 6
G ×1010

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G

×105 Loops = 15

AxB

A(log(x))B + C

Figure A.1: Plot of HG vs PG. In each plot we can see graphs for loop orders from 3 to 15. All
the graphs seem to exhibit a correlation, which for 12 loop orders onwards is neither a power
law (red line), nor a A log(x)B + C behaviour (blue line).

A-3

L a σa b σb
7 3.9848×10−5 1.8×10−7 1.3490 3.8×10−4

8 8.3227×10−6 4.3×10−8 1.3516 3.8×10−4

9 1.6235×10−6 1.1×10−8 1.3580 4.4×10−4

10 3.0297×10−7 2.7×10−9 1.3655 5.2×10−4

11 5.0724×10−8 5.4×10−10 1.3775 5.8×10−4

12 8.7522×10−9 1.1×10−10 1.3858 6.2×10−4

13 1.4063×10−9 2.1×10−11 1.3962 6.9×10−4

14 2.2276×10−10 4.3×10−12 1.4057 8.2×10−4

15 3.2601×10−11 6.8×10−13 1.4169 8.3×10−4

Table A.1: Table of the parameters obtained by fitting the function AxB to the period and
Hepp’s bound. The data and the curve obtained are displayed in fig. A.1

L A σA B σB C σC
7 1.399× 10−15 0.82× 10−16 16.1954 2.3× 10−2 6.45 0.42
8 6.459× 10−19 0.38× 10−19 18.6027 2.2× 10−2 12.25 0.80
9 2.634× 10−22 0.18× 10−23 20.9420 2.5× 10−2 18.0 1.8
10 7.033× 10−26 0.46× 10−27 23.3366 2.3× 10−2 22.4 3.1
11 1.679× 10−29 0.13× 10−30 25.6863 2.6× 10−2 5.6 6.3
12 2.867× 10−33 0.22× 10−34 28.0731 2.5× 10−2 −39 11
13 3.109× 10−37 0.29× 10−38 30.5412 3.0× 10−2 −97 23
14 2.915× 10−41 0.32× 10−42 32.9929 3.4× 10−2 −329 48
15 1.941× 10−45 0.25× 10−46 35.4922 3.9× 10−2 −676 95

Table A.2: Table of the parameters obtained by fitting the function A log(x)B +C to the period
and Hepp’s bound. The data and the curve obtained are displayed in fig. A.1

A-4

A.3 Results for fits of the uncertainty

2 4 6 8 10 12
0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020
N = 5.0e+05

2 4 6 8 10 12

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014
N = 1.0e+06

2 4 6 8 10 12

2

3

4

5

6

7

8

9 1e 5 N = 2.5e+06

2 4 6 8 10 12
1

2

3

4

5

6
1e 5 N = 5.0e+06

2 4 6 8 10 12
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
1e 5 N = 7.5e+06

2 4 6 8 10 12

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 1e 5 N = 1.0e+07

quadratic fit
data

Figure A.2: Fit for σL[N].

N [×104] A[×10−2] σA[×10−2] B[×10−4] σB[×10−4] σ2
A,B[×10−9]

5 2.3468 0.054 7.370 0.069 -3.1
10 2.3196 0.053 7.337 0.068 -3.0
50 2.3091 0.040 7.279 0.051 -1.7

100 2.3054 0.044 7.328 0.057 -2.1
250 2.3026 0.044 7.311 0.057 -2.1
500 2.3082 0.040 7.311 0.051 -1.7
750 2.3147 0.039 7.291 0.051 -1.7

10000 2.310 0.040 7.303 0.051 -1.7

Table A.3: Table of results for the fits in fig. A.2.

Bibliography

[1] C. Anastasiou, D. P. L. Bragança, L. Senatore, and H. Zheng. Efficiently evaluating loop
integrals in the EFTofLSS using QFT integrals with massive propagators, dec 2022.

[2] N. Arkani-Hamed, Y. Bai, and T. Lam. Positive geometries and canonical forms. Journal
of High Energy Physics, nov 2017.

[3] M. Bergere and Y.-M. P. Lam. Bogolubov–Parasiuk theorem in the α-parametric represen-
tation. Journal of Mathematical Physics, 17:1546–1557, 1976.

[4] T. Binoth and G. Heinrich. An automatized algorithm to compute infrared divergent multi-
loop integrals. Nuclear Physics B, 585(3):741–759, oct 2000.

[5] C. Bogner and S. Weinzierl. Feynman graph polynomials. International Journal of Modern
Physics A, 25(13):2585–2618, 2010.

[6] M. Borinsky. Renormalized asymptotic enumeration of Feynman diagrams. Annals of
Physics, 385:95–135, oct 2017.

[7] M. Borinsky. Tropical Monte Carlo quadrature for Feynman integrals, 2020.

[8] M. Borinsky. personal communication, 2023-03-29.

[9] M. Borinsky and O. Schnetz. Recursive computation of Feynman periods. Journal of High
Energy Physics, 2022(8):291, Aug 2022.

[10] J. B. Boyling. A homological approach to parametric feynman integrals. Nuovo Cim. (10),
53A: 351-75(Jan. 21, 1968)., 1 1968.

[11] D. Broadhurst and D. Kreimer. Knots and Numbers in φ4 Theory to 7 Loops and Beyond.
International Journal of Modern Physics C, 06(04):519–524, 1995.

[12] F. Brown. On the periods of some Feynman integrals. preprint, 2009.

[13] F. Brown. Invariant Differential Forms on Complexes of Graphs and Feynman Integrals.
SIGMA, 17:103, 2021.

[14] F. Brown and O. Schnetz. Single-valued multiple polylogarithms and a proof of the zig–zag
conjecture. J. Number Theor., 148:478–506, 2015.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[16] R. Diestel. Planar Graphs, pages 89–118. Springer Berlin Heidelberg, Berlin, Heidelberg,
2017.

[17] G. V. Dunne and M. Meynig. Instantons or renormalons? Remarks on φ4
d=4 theory in the

MS scheme. Phys. Rev. D, 105:025019, Jan 2022.

[18] S. Gorishny, S. Larin, and F. Tkachov. The algorithm for OPE coefficient functions in the
MS scheme. Physics Letters B, 124(3):217–220, 1983.

A-5

Bibliography A-6

[19] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Springer Netherlands,
Dordrecht, 1964.

[20] G. Heinrich. Collider physics at the precision frontier. Physics Reports, 922:1–69, aug
2021.

[21] K. Hepp. Proof of the Bogoliubov-Parasiuk theorem on renormalization. Communications
in Mathematical Physics, 2(1):301–326, Dec 1966.

[22] M. Joswig, D. Maclagan, and B. Sturmfels. “Introduction to Tropical Geometry”. Jahres-
bericht der Deutschen Mathematiker-Vereinigung, 118(3):233–237, Sep 2016.

[23] T. Kaneko and T. Ueda. A geometric method of sector decomposition. Computer Physics
Communications, 181(8):1352–1361, aug 2010.

[24] M. V. Kompaniets and E. Panzer. Minimally subtracted six-loop renormalization of
O(n)−symmetric φ4 theory and critical exponents. Physical Review D, 96(3), aug 2017.

[25] A. Kotikov. Differential equations method. New technique for massive Feynman diagram
calculation. Physics Letters B, 254(1):158–164, 1991.

[26] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[27] E. Panzer. Feynman integrals and hyperlogarithms, 2015.

[28] E. Panzer. Hepp’s bound for Feynman graphs and matroids. Annales de l’Institut Henri
Poincaré D, 2019.

[29] M. E. Peskin and D. V. Schroeder. An Introduction to quantum field theory. Addison-
Wesley, Reading, USA, 1995.

[30] E. Remiddi. Differential equations for Feynman graph amplitudes. Il Nuovo Cimento A,
110(12):1435–1452, dec 1997.

[31] J. Richter-Gebert. Calculating with Points on Lines. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[32] R. J. Rossi. Likelihood-based Estimation, chapter 5, pages 223–279. John Wiley & Sons,
Ltd, 2018.

[33] V. A. Smirnov. Analytic Tools for Feynman Integrals. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[34] E. R. Speer and M. J. Westwater. Generic Feynman amplitudes. Annales de l’institut
Henri Poincaré. Section A, Physique Théorique, 14(1):1–55, 1971.

[35] D. A. Spielman and S.-H. Teng. Nearly-Linear Time Algorithms for Preconditioning and
Solving Symmetric, Diagonally Dominant Linear Systems, 2012.

[36] G. ’t Hooft. Dimensional regularization and the renormalization group. Nuclear Physics
B, 61:455–468, 1973.

[37] G. ’t Hooft and M. Veltman. Regularization and renormalization of gauge fields. Nuclear
Physics B, 44(1):189–213, 1972.

[38] S. Weinberg. High-Energy Behavior in Quantum Field Theory. Phys. Rev., 118:838–849,
May 1960.

Bibliography A-7

[39] S. Weinzierl. Feynman Integrals: A Comprehensive Treatment for Students and Re-
searchers. Springer International Publishing, 2022.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Feynman graphs and Feynman integrals

	2 Schwinger parametrisation and projective integrals
	2.1 Schwinger parametrisation
	2.2 Projective Feynman integral
	2.2.1 An illustrative example

	3 Monte Carlo integration
	3.1 Naive Monte Carlo integration
	3.1.1 Monte Carlo integration failing

	3.2 Tropical approximation
	3.3 Sector decomposition
	3.4 Tropical sampling algorithm
	3.4.1 Tropical integration applied
	3.4.2 Tropical sampling sped up

	4 Distribution for randomly generated graphs
	4.1 Generating random graphs
	4.1.1 Example
	4.1.2 Handling subdivergences

	4.2 Distribution of Feynman integrals
	4.2.1 Period and Hepp bound relation

	4.3 Amplitude

	5 Conclusions and outlook
	A
	A.1 Gaussian Integrals
	A.2 Period vs Hepp Bound plot for different loop orders
	A.3 Results for fits of the uncertainty

	Bibliography

