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e Objects of interest: Correlation functions
G(x1,x2,x3)

e Quantifies correlation between points in space.
e G(x1,x2,x3) € R = probability of three ‘scalar’ events.
e G(x1,x2,x3) € V = substructure at each point (e.g. spin).

e Arbitary number of points can be correlated G(x1, x2, X3, .. .).
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Perturbation theory

e No exact formula for correlation functions!

e We need perturbation theory:
G(x1,x2,x3) = Go(x1, %2, x3) + hGi(x1, x2,x3) + h? Ga(x1, X2, X3) + ..

e Each G,(x1, x2,x3) can be written as a sum over graphs:

Gn(X17X27X3) — Z QD(r)
I
x(MN=1—n

The function ¢ associates an integral to each graph.

e The graphs are called Feynman graphs. The integrals are
called Feynman integrals, the function ¢ is called Feynman

rule.
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Algebraic integrals: Periods

e The Feynman integrals are except for the dependence on the
physical input algebraic integrals:

0= [ g (7)

e The renormalization group independent part is purely

df2
UDb/2

e For small graphs this number is mostly a linear combination of

algebraic: The ‘period’

is an interesting number.

multiple zeta values.
e There exists various number theoretic conjectures on the
period: Coaction conjecture, Cosmic galois group, Motives
etc. S



Fourier

Momentum space Position space
Correlation functions are Correlation functions are
parametrized by the momentum parametrized by the position of
of particles particles
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Why position space?

Advantages

e Simpler Feynman rules
e No IBP reduction necessary

e Conceptually interesting viewpoint

Caveats
e New technology needed

e Only position space quantities accessible

Proof of concept:
7-loop B-function in ¢* calculated in 2016 by Oliver Schnetz using

graphical functions.
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Feynman integral in momentum space

E(Pla ey Pn) = ( /deeZ(ke)> o (Z k >
ecE VEth

esv

-
Lower dimensional integral

Feynman integral in position space

G(x1,...,%p) = H /dDXV H A(xa — Xxp)

L/\,_,—/—J

Better factorization properties



Momentum space
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Graphical reductions




Graphical reduction rules

1. rule: propogators between external vertices

G(Xa, Xp, Xc) = | dPyA(xa — y)A(xs — y)Alxe — y)A(Xa — Xp)
= A(xa — xb)H(Xa, Xp, Xc)
X, “a
(> = H =
Ay X Xy ~C

= edges between external vertices factorize.



Graphical reduction rules

= if split along external vertices. 10



Graphical reduction rules

Intermezzo: amputating a propagator

Recall the definition of the propagator, A, as Green'’s function for
the free field equation

(Ox — m)A(x — y) = 5P (x — y)

We can use this equation to amputate free external edges.

11



Graphical reduction rules

3. rule: amputating an external edge

(DXa o m2)G(Xa,Xb,XC) — /dDy(DXa o m2)A(Xa — Y)A(Xb — Y)A(XC — )/)

_ / e — A — A — )

= A(xp — xa)A(xc — xa) = H(xa, xp, Xc)

>(b %b
W@) ’_( _
{& X« B X
® a
Xc, NG

= solve differential equation to add external edge. 12



Differential equations

For rule 3, a differential equation needs to be solved:

(O, — m2)G”<@(xa, )=6Y:, )

Can be solved systematically if (Schnetz 2013)
e particles are massless, m = 0,
e only 3-point functions are considered

e in D =4 — ¢ Euklidean space.
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Differential equations

For rule 3, a differential equation needs to be solved:

Y
O — 6 Y. )= 6¥0. . )

Can be solved systematically if (Schnetz 2013)
e particles are massless, m = 0,
e only 3-point functions are considered

e in D =4 — ¢ Euklidean space.

Related approach: (Drummond, Henn, Smirnov 2007) (Magic
identities)
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3-point configuration space is 2-dimensional, due to Poincare and

scaling invariance:
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3-point configuration space is 2-dimensional, due to Poincare and

scaling invariance:
/ / /
G(Xa, Xp, Xc) = G(X5, Xp, XZ)
for

T AV
X = Noxp

x = v + x}!

with A € SO(D) and v € RP and

G(Axa, AXp, Axc) = XY G(Xa, Xp, Xc)-

= G only depends on the shape of the triangle spanned by

Xaaxbaxc-

14



Exploit this symmetry by using complex paramater z such that

2 2
77="2 and (1-2z)(1-3) =t
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Exploit this symmetry by using complex paramater z such that

2 2
77="22 and (1-2z)(1-32)= L
Xab Xab
|:|XC G%@(Xén Xb7 XC) — G@(Xaa Xb7 XC)
[ 3 N
Zizazai(z —Z) G‘-{@(Z,i) — G‘G@(Z?z)

The 0, and 05 operators can be inverted in the function space of
generalized single-valued hyperlogarithms (Chavez, Duhr 2012,
Schnetz 2014, Schnetz 2017).
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Graphical functions

e Rules 1,2,3 are part of a larger framework: graphical functions
(Schnetz 2013).

e Graphical functions can also be applied in a broader context,

e.g. to conformal amplitudes (Basso, Dixon 2017).

e Calculation within this framework are extremely efficient, due
to the rapid reductions and small numbers of irreducible

master diagrams.

e Additional identities specific to the theory (e.g. conformal
transformations for scalar theories).

16



Graphical functions for gauge theory




Beyond scalar

Only change: adding an edge

For instance, for abelian gauge theory:

O — @ and n**0O,
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Beyond scalar

Only change: adding an edge
For instance, for abelian gauge theory:
O — @ and n**0O,
The differential equation for appending an edge,
O, G%@(xa, L) = G‘@(Xa, )

becomes a system of differential equations

i) Y,
@XaG (Xa,...) =G (Xa,-..)

17



Paramatrizing non-scalar graphical functions

~d2
axc G (Xéh Xbs XC)

2

G (Xa,Xb,Xc)
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Paramatrizing non-scalar graphical functions

2 2
axc G Xaaxbaxc) — G (Xa7Xb7XC)

(M T W (ak—ag)) iy = G(@(z,z,)\j)

zZ—7Z

Using light-cone-like parametrization z,z, ¥, \" such that

2 2
27=2% and (1—z)(1-32)= ke
Xab Xab

= A+ 2 xt =z MWz \ xt = (1—-2)MW+(1-2)\
M, =N\, =0

Actual inversion becomes more complicated: D # 4 dimensional

Laplacian has to be inverted.
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Diagonalization of the equation system gives,

Ap 0 0\ .o

0 Apyo 0 |G (XayXpyX) =

0 0 Apia

where Ap = —2-0,0;(z —2) — 2=2(9, — 05).
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Diagonalization of the equation system gives,

Ap 0 0\ g

0 Apio 0 G (Xayxp,xc) = G

0 0 Apia

where Ap = —2-0,0;(z —2) — 2=2(9, — 05).

—Z z

= we would like to invert Ap for general even D.

19



Extension to D £ 4

e For general dimension D we need to solve,

_ ~0) 2.
(z_azai(z—z)—D _4(02—32)) G (z72) = G (z3)

Z—Z Z—Z
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Extension to D £ 4

e For general dimension D we need to solve,

~ ~0 &
(z_azai(z—z)—D _4(02—32)) G (z7) = G (z,2)

Z—Z Z—Z

e This is also possible for arbitrary even D using a non-trivial
linear combination of integration operators.
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_ ) &)
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Extension to D £ 4

e For general dimension D we need to solve,

Z—Z Z—Z

_ ) o,
(2 B,05(z—7) — 2 4(02—82)) ¢ 2d = G (29

e This is also possible for arbitrary even D using a non-trivial

linear combination of integration operators.
= Opens the door to calculations in gauge theories.

= Immediately possible tools: ¢3-theory. With applications to
percolation theory and other variants (e.g. biadjoint ¢3).

20



An inverse to the differential operator

1 1 _
§A2—|—2n = Eazai(z —Z) —

n_}(az_ai)

Z—Z

is given by the integration operator:

I, = Z cn,k,/(z—i)_k/ dz(z—Z)k‘L//S dz(z—3z)~!
\% \%

k,1=0 S

where ¢, i | are some easily determined coefficients.

21
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4- and 3-loop results due to (John Gracey 2015; de
Alcantara Bonfim, Kirkham, McKane, 1980).

Bys(g) = (

= More accurate predictions for the critical exponents in
percolation theory and for the Lee-Yang edge singularity.
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Efficient graphical reduction replaces IBP reduction in x-space.
Work in progress: extension to gauge theory.
Intermediate step finished: extension to arbitrary even D.

Application of ¢3-theory: Critical exponents in percolation

theory.

Question: Extension to odd D possible?
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Example of a

X

- which is irreducible w.r.t. rules 1-3:

Ke
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